Tiefpreis
CHF84.15
Auslieferung erfolgt in der Regel innert 2 bis 4 Werktagen.
A thoroughly-revised edition of the landmark text on computer security
This guide uncovers the technology behind network security: its strengths, weaknesses, past, and future. It answers fundamental questions like: How do you identify yourself and prevent others from impersonating you? How do you communicate with others? How do you maintain your privacy? How do you buy and sell things? As a tutorial, it explains sophisticated concepts in a friendly and intuitive manner. As a reference, it covers concepts and techniques rigorously and in depth.
The authors cover a wide spectrum of topics essential for securing web-based transactions, including public and secret key cryptography, hashes/message digests, signatures, authentication, blockchains, electronic money, secret sharing, and multiparty computation. They also address exciting emerging issues such as quantum computing, post-quantum algorithms, homomorphic encryption, and secure multiparty computation.
Wherever math beyond high school algebra is needed, Network Security, 3rd Edition covers what students need to know, making it a self-contained solution suitable for undergraduate students, graduate students, and working engineers alike. To support learning and mastery, it also includes extensive homework problems, fully updated to reflect current concepts and technologies.
The classic guide to cryptography and network security now fully updated!
Alice and Bob are back!
Widely regarded as the most comprehensive yet comprehensible guide to network security and cryptography, the previous editions of Network Security received critical acclaim for lucid and witty explanations of the inner workings of cryptography and network security protocols. In this edition, the authors have significantly updated and revised the previous content, and added new topics that have become important.
This book explains sophisticated concepts in a friendly and intuitive manner. For protocol standards, it explains the various constraints and committee decisions that led to the current designs. For cryptographic algorithms, it explains the intuition behind the designs, as well as the types of attacks the algorithms are designed to avoid. It explains implementation techniques that can cause vulnerabilities even if the cryptography itself is sound. Homework problems deepen your understanding of concepts and technologies, and an updated glossary demystifies the field's jargon. Network Security , Third Edition will appeal to a wide range of professionals, from those who design and evaluate security systems to system administrators and programmers who want a better understanding of this important field. It can also be used as a textbook at the graduate or advanced undergraduate level.
Coverage includes
Quantum-safe public key algorithms: how they are constructed, and optimizations to make them practical
Autorentext
Charlie Kaufman is currently Security Architect for Dell Storage Systems. Previously, he was the Security Architect for Microsoft Azure and before that for Lotus Notes. He has contributed to a number of IETF standards efforts including IPsec, S/MIME, and DNSSEC and served as a member of the Internet Architecture Board. He served on the National Academy of Sciences expert panel that wrote the book Trust In Cyberspace.
Radia Perlman is currently a Fellow at Dell Technologies. She is known for her contributions to bridging (spanning tree algorithm), routing (link state routing), and security (distributed systems robust despite malicious participants). She's the author of Interconnections: Bridges, Routers, Switches, and Internetworking Protocol. She's been elected to the National Academy of Engineering, the National Inventors Hall of Fame, the Internet Hall of Fame, and awarded lifetime achievement awards from Usenix and ACM's SIGCOMM. She has a PhD in computer science from MIT.
Mike Speciner is an MIT-trained technologist with expertise in mathematics, physics, and computer science. He currently serves as CTO and cofounder of The Singing Torah. His hobby is writing software for educational purposes in various common and obscure programming languages.
Ray Perlner is a Mathematician in the Cryptographic Technology Group of the National Institute of Standards and Technology. He has over a dozen research papers focusing primarily on post-quantum cryptography. He has degrees in both physics and mathematics from MIT.
Klappentext
Wherever math beyond high school algebra is needed, Network Security, 3rd Edition covers what students and other readers need to know, making it a self-contained solution suitable for undergraduate students, graduate students, and working engineers alike. To support learning and mastery, it also includes extensive homework problems, fully updated to reflect current concepts and technologies. This guide uncovers the technology behind network security: its strengths, weaknesses, past, and future. It answers fundamental questions like: How do you identify yourself and prevent others from impersonating you? How do you communicate with others? How do you maintain your privacy? How do you buy and sell things? As a tutorial, it explains sophisticated concepts in a friendly and intuitive manner. As a reference, it covers concepts and techniques rigorously and in depth. The authors cover a wide spectrum of topics essential for securing web-based transactions, including public and secret key cryptography, hashes/message digests, signatures, authentication, blockchains, electronic money, secret sharing, and multiparty computation. They also address exciting emerging issues such as quantum computing, post-quantum algorithms, homomorphic encryption, and secure multiparty computation.
Inhalt
Chapter 1 Introduction
1.1 Opinions, Products
1.2 Roadmap to the Book
1.3 Terminology
1.4 Notation
1.5 Cryptographically Protected Sessions
1.6 Active and Passive Attacks
1.7 Legal Issues
1.7.1 Patents
1.7.2 Government Regulations
1.8 Some Network Basics
1.8.1 Network Layers
1.8.2 TCP and UDP Ports
1.8.3 DNS (Domain Name System)
1.8.4 HTTP and URLs
1.8.5 Web Cookies
1.9 Names for Humans
1.10 Authentication and Authorization
1.10.1 ACL (Access Control List)
1.10.2 Central Administration/Capabilities
1.10.3 Groups
1.10.4 Cross-Organizational and Nested Groups
1.10.5 Roles
1.11 Malware: Viruses, Worms, Trojan Horses
1.11.1 Where Does Malware Come From?
1.11.2 Virus Checkers
1.12 Security Gateway
1.12.1 Firewall
1.12.2 Application-Level Gateway/Proxy
1.12.3 Secure Tunnels
1.12.4 Why Firewalls Don't Work
1.13 Denial-of-Service (DoS) Attacks
1.14 NAT (Network Address Translation)
1.14.1 Summary
Chapter 2 Introduction to Cryptography
2.1 Introduction
2.1.1 The Fundamental Tenet of Cryptography
2.1.2 Keys
2.1.3 Computational Difficulty
2.1.4 To Publish or Not to Publish
2.1.5 Earliest Encryption
2.1.6 One-Time Pad (OTP)
2.2 Secret Key Cryptography
2.2.1 Transmitting Over an Insecure Channel
2.2.2 Secure Storage on Insecure Media
2.2.3 Authentication
2.2.4 Integrity Check
2.3 Public Key Cryptography
2.3.1 Transmitting Over an Insecure Channel
2.3…