CHF78.00
Impression sur demande - l'exemplaire sera recherché pour vous.
Issu d'un cours de maîtrise de l'Université Paris VII, ce texte est réédité tel qu'il était paru en 1978. A propos du théorème de Bézout sont introduits divers outils nécessaires au développement de la notion de multiplicité d'intersection de deux courbes algébriques dans le plan projectif complexe. Partant des notions élémentaires sur les sous-ensembles algébriques affines et projectifs, on définit les multiplicités d'intersection et interprète leur somme entermes du résultant de deux polynômes. L'étude locale est prétexte à l'introduction des anneaux de série formelles ou convergentes ; elle culmine dans le théorème de Puiseux dont la convergence est ramenée par des éclatements à celle du théorème des fonctions implicites. Diverses figures éclairent le texte: on y "voit" en particulier que l'équation homogène x3+y3+z3 = 0 définit un tore dans le plan projectif complexe.
From the reviews:
"The book contains an introduction to the theory of algebraic plane curves, in a form suitable for a first course in Algebraic Geometry at undergraduate/graduate level. Using the basic properties of polynomial rings, the author introduces algebraic sets in the plane, irreducible components and local analysis by means of localisations of the coordinate rings. the author presents the local theory of singularities and intersection multiplicities, using as his basic tool the Puiseux expansions at a point." (Luca Chiantini, Zentralblatt MATH, Vol. 1133 (11), 2008)
Auteur
Sous-ensembles algébriques de C.- Ensembles algébriques affines.- Courbes planes affines.- Ensembles algébriques projectifs.- Courbes projectives planes : le théorème de Bezout.- Le résultant.- Point de vue local : anneaux de series formelles.- Anneaux de series convergentes.- Le théorème de Puiseux.- Théorie locale des intersections de courbes.
Texte du rabat
Issu d'un cours de maîtrise de l'Université Paris VII, ce texte est réédité tel qu'il était paru en 1978. A propos du théorème de Bézout sont introduits divers outils nécessaires au développement de la notion de multiplicité d'intersection de deux courbes algébriques dans le plan projectif complexe. Partant des notions élémentaires sur les sous-ensembles algébriques affines et projectifs, on définit les multiplicités d'intersection et interprète leur somme entermes du résultant de deux polynômes. L'étude locale est prétexte à l'introduction des anneaux de série formelles ou convergentes ; elle culmine dans le théorème de Puiseux dont la convergence est ramenée par des éclatements à celle du théorème des fonctions implicites. Diverses figures éclairent le texte: on y "voit" en particulier que l'équation homogène x 3 +y 3 +z 3 = 0 définit un tore dans le plan projectif complexe.
Contenu
Ensembles algébriques affines.- Courbes planes affines.- Ensembles algébriques projectifs.- Courbes projectives planes : le théorème de Bézout.- Le résultant.- Point de vue local: anneaux de séries formelles.- Anneaux de séries convergentes.- Le théorème de Puiseux.- Théorie locale des intersections de courbes.