CHF87.00
Download est disponible immédiatement
Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods.
This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include:
Second quantization with spin adaptation
Gaussian basis sets and molecular-integral evaluation
Hartree-Fock theory
Configuration-interaction and multi-configurational self-consistent theory
Coupled-cluster theory for ground and excited states
Perturbation theory for single- and multi-configurational states
Linear-scaling techniques and the fast multipole method
Explicity correlated wave functions
Basis-set convergence and extrapolation
Calibration and benchmarking of computational methods, with applications to moelcular equilibrium structure, atomization energies and reaction enthalpies.
Molecular Electronic-Structure Theory makes extensive use of numerical examples, designed to illustrate the strengths and weaknesses of each method treated. In addition, statements about the usefulness and deficiencies of the various methods are supported by actual examples, not just model calculations. Problems and exercises are provided at the end of each chapter, complete with hints and solutions.
This book is a must for researchers in the field of quantum chemistry as well as for nonspecialists who wish to acquire a thorough understanding of ab initio molecular electronic-structure theory and its applications to problems in chemistry and physics. It is also highly recommended for the teaching of graduates and advanced undergraduates.
Auteur
Trygve Helgaker, Department of Chemistry, University of Oslo, Norway. Poul Jorgensen and Jeppe Olsen Department of Chemistry, University of Aarhus, Denmark.
Contenu
Preface xxi
Overview xxv
Programs used in the preparation of this book xxix
1. Second Quantization 1
1.1 The Fock space 1
1.2 Creation and annihilation operators 2
1.3 Number-conserving operators 6
1.4 The representation of one- and two-electron operators 9
1.5 Products of operators in second quantization 14
1.6 First- and second-quantization operators compared 18
1.7 Density matrices 19
1.8 Commutators and anticommutators 25
1.9 Nonorthogonal spin orbitals 27
2. Spin in Second Quantization 34
2.1 Spin functions 34
2.2 Operators in the orbital basis 35
2.3 Spin tensor operators 41
2.4 Spin properties of determinants 46
2.5 Configuration state functions 51
2.6 The genealogical coupling scheme 53
2.7 Density matrices 61
3. Orbital Rotations 80
3.1 Unitary transformations and matrix exponentials 80
3.2 Unitary spin-orbital transformations 86
3.3 Symmetry-restricted unitary transformations 89
3.4 The logarithmic matrix function 93
4. Exact and Approximate Wave Functions 107
4.1 Characteristics of the exact wave function 107
4.2 The variation principle 111
4.3 Size-extensivity 126
4.4 Symmetry constraints 135
5. The Standard Models 142
5.1 One- and N-electron expansions 143
5.2 A model system: the hydrogen molecule in a minimal basis 146
5.3 Exact wave functions in Fock space 162
5.4 The Hartree-Fock approximation 167
5.5 Multiconfigurational self-consistent field theory 176
5.6 Configuration-interaction theory 181
5.7 Coupled-cluster theory 186
5.8 Perturbation theory 192
6. Atomic Basis Functions 201
6.1 Requirements on one-electron basis functions 201
6.2 One- and many-centre expansions 203
6.3 The one-electron central-field system 204
6.4 The angular basis 207
6.5 Exponential radial functions 218
6.6 Gaussian radial functions 229
7. Short-Range Interactions and Orbital Expansions 256
7.1 The Coulomb hole 256
7.2 The Coulomb cusp 259
7.3 Approximate treatments of the ground-state helium atom 262
7.4 The partial-wave expansion of the ground-state helium atom 267
7.5 The principal expansion of the ground-state helium atom 273
7.6 Electron-correlation effects summarized 278
8. Gaussian Basis Sets 287
8.1 Gaussian basis functions 287
8.2 Gaussian basis sets for Hartree-Fock calculations 288
8.3 Gaussian basis sets for correlated calculations 300
8.4 Basis-set convergence 315
8.5 Basis-set superposition error 327
9. Molecular Integral Evaluation 336
9.1 Contracted spherical-harmonic Gaussians 336
9.2 Cartesian Gaussians 338
9.3 The Obara-Saika scheme for simple integrals 344
9.4 Hermite Gaussians 349
9.5 The McMurchie-Davidson scheme for simple integrals 352
9.6 Gaussian quadrature for simple integrals 357
9.7 Coulomb integra;s over spherical Gaussians 361
9.8 The Boys function 365
9.9 The McMurchie-Davidson scheme for Coulomb integrals 372
9.10 The Obara-Saika scheme for Coulomb integrals 381
9.11 Rys quadrature for Coulomb integrals 387
9.12 Scaling properties of the molecular integrals 398
9.13 The multipole method for Coulomb integrals 405
9.14 The multipole method for large systems 417
10. Hartree-Fock Theory 433
10.1 Parametrization of the wave function and the energy 433
10.2 The Hartree-Fock wave function 438
10.3 Canonical Hartree-Fock theory 443
10.4 The RHF total energy and orbital energies 450 10.5 Koopmans' theor...