CHF59.90
Download est disponible immédiatement
Zur Zeit liegt uns keine Inhaltsangabe vor.
Texte du rabat
Zur Zeit liegt uns keine Inhaltsangabe vor.
Contenu
1 Ontogeny of Human Plasma Proteins: Detection of the Onset and Site of Synthesis Using Genetic Markers and in Vitro Cultures.- 1.1. Introduction.- 1.2. Immunoglobulins.- 1.2.1. Classes and Subclasses and Genetic Markers.- 1.2.2. Synthesis of Ig Molecules at Cellular Level.- 1.2.3. Transfer of Immunoglobulins through the Placenta.- 1.2.4. Synthesis of Immunoglobulins during Fetal Life.- 1.3. Complement.- 1.3.1. The Components of Complement.- 1.3.2. Levels and Fetal Synthesis of the Components of C.- 1.4. Haptoglobin System.- 1.5. Transferrins.- 1.6. ?-Lipoprotein Variants: The Ag and Lp Systems.- 1.7. Group-Specific Components: The Gc System.- 1.8. ?1-Antitrypsin: The Pi System.- 1.9. Ceruloplasmin.- 1.10. Other Adult Plasma Proteins.- 1.11. Fetal Proteins.- 1.12. ?-Fetoprotein (AFP).- 1.12.1. AFP in Patients with Primary Cancer of Liver and Teratoblastoma.- 1.12.2. Amniotic Levels of AFP in Neural Tube Defects, Fetal and Placental Distress.- 1.13. Carcinoembryonic Antigen.- 1.14. Fetal Sulfoglycoprotein Antigen (FSA).- 1.15. Other Fetal Proteins Associated with Cancer.- 1.16. Conclusion.- References.- 2 Transferrin.- 2.1. Introduction.- 2.2. Historical.- 2.3. Physicochemical Properties of Transferrin.- 2.3.1. Molecular Weight.- 2.3.2. Amino Acid Composition.- 2.3.3. Carbohydrate Composition.- 2.3.4. Structure of Transferrin.- 2.4. The Metal-Binding Sites.- 2.4.1. Structure of the Binding Sites: Ligands.- 2.4.2. Strength of Metal Binding to Transferrin.- 2.4.3. The Role of Anions in Metal-Transferrin Complexes.- 2.4.4. Differences between Metal-Binding Sites.- 2.4.5. The Effect of Iron-Binding on Transferrin.- 2.4.6. The Binding of Metals Other than Iron.- 2.5. Functions of Transferrin.- 2.5.1. Iron Exchange.- 2.5.2. Bacteriostasis.- 2.6. Distribution and Metabolism.- 2.6.1. Atransferrinemia.- 2.6.2. Transferrin Levels in Plasma and Serum.- 2.6.3. Transferrin in Other Body Fluids.- 2.6.4. Factors Affecting Transferrin Levels in Plasma.- 2.6.5. Distribution and Catabolism.- 2.6.6. Synthesis of Transferrin.- 2.7. Conclusion.- References.- 3 Albumin Synthesis and Degradation.- 3.1. Introduction.- 3.2. Evolution and Variants.- 3.3. Albumin Metabolism.- 3.3.1. Methods of Study.- 3.3.2. Albumin Synthesis.- 3.3.3. Site of Albumin Synthesis.- 3.4. Albumin Transport.- 3.4.1. Cellular Transport.- 3.4.2. Extracellular Transport.- 3.5. Development and Normal Values for Albumin Metabolism.- 3.5.1. Development.- 3.5.2. Albumin Metabolism.- 3.6. Nutritional Control.- 3.7. Hormonal Effects.- 3.8. Osmotic Regulation.- 3.9. Environmental Effects.- 3.9.1. Distribution-Intravascular.- 3.9.2. Distribution-Extravascular.- 3.10. Degradation.- Addendum.- References.- 4 Turnover of Plasma Proteins.- 4.1. Introduction.- 4.2. Measurement of Protein Turnover.- 4.2.1. Measurement of Synthesis Rates in Vivo.- 4.2.2. Measurement of Degradation Rates in Vivo.- 4.2.3. Measurement of Degradation and Synthesis in Nonsteady-State Conditions.- 4.2.4. Short-Term Measurement of Degradation.- 4.2.5. Measurement of Synthesis and Degradation in Vitro.- 4.3. Mechanisms of Synthesis and Degradation of Liver-Produced Plasma Proteins.- 4.3.1. Mechanisms of Synthesis at the Transcriptional Level.- 4.3.2. Mechanisms of Synthesis at the Translational Level.- 4.3.3. Mechanisms of Degradation of Plasma Proteins.- 4.4. Regulation of Protein Turnover.- 4.4.1. Nonspecific Regulatory Mechanisms.- 4.4.2. Specific Regulatory Mechanisms.- 4.5. Summary.- References.- 5 The Role of Sialic Acid in the Catabolism of Plasma Glycoproteins.- 5.1. Introduction.- 5.2. A Unified Mechanism for Turnover and Catabolism.- 5.2.1. Catabolic Initiation.- 5.2.2. Interaction of Desialylated Glycoproteins with Liver Cells.- 5.2.3. Catabolism.- 5.3. Physiological Significance of Desialylation of Plasma Glycoproteins.- 5.4. Disorders of Glycoprotein Catabolism.- References.- 6 Catabolism of Plasma Proteins.- 6.1. Introduction.- 6.2. Preparation of Labeled Proteins for Metabolic Studies.- 6.3. Some Considerations about Sites of Catabolism.- 6.3.1. The Plasma and Other Body Fluid Compartments.- 6.3.2. The Cell in General.- 6.3.3. The Gastrointestinal Lumen.- 6.4. Organs Involved in Plasma Protein Catabolism.- 6.4.1. The Liver.- 6.4.2. The Lung.- 6.4.3. The Kidney.- 6.4.4. The Reticuloendothelial Cells.- 6.5. Is the Catabolism of Plasma Proteins a One-Step Process?.- 6.6. Concluding Remarks.- References.- 7 Plasma Proteinase Inhibitors.- 7.1. Introduction.- 7.2. The Identification and Separation of Plasma Proteinase Inhibitors.- 7.3. ?1-Antichymotrypsin.- 7.4. ?1-Globulin Trypsin Inhibitor (?1-TI).- 7.4.1. Purification of ?1-TI.- 7.4.2. Measurement of Proteinase-Inhibitory Activity of ?1-TI..- 7.4.3. Normal Plasma Levels of ?1TI.- 7.4.4. The Interaction of ?1-TI with Proteinases.- 7.4.5. Metabolism and Turnover of ?1-TI.- 7.4.6. Variations of ?1-TI in Health and Disease.- 7.4.7. Genetic Polymorphism of ?1-TI.- 7.4.8. The Association of ?1-TI Deficiency with Chronic Obstructive Pulmonary Disease (COPD).- 7.4.9. ?1-TI Deficiency in Infantile Cirrhosis.- 7.4.10. ?1-TI Levels in the Idiopathic Respiratory Distress Syndrome (IRDS).- 7.5. ?2-Macroglobulin (?2-M).- 7.5.1. Purification and Properties.- 7.5.2. Measurement of ?2-M.- 7.5.3. Normal Levels of ?2-M.- 7.5.4. Variation of ?2-M Levels in Health and Disease.- 7.5.5. Metabolism and Turnover of ?2-M.- 7.5.6. Genetics of ?2-M.- 7.5.7. The Interaction of ?2-M with Proteinases.- 7.5.8. Residual Peptidase and Proteinase Activity of ?2-M-Proteinase Complexes.- 7.5.9. In Vivo Fate of ?2-M-Proteinase Complexes.- 7.6. Inter-?-Trypsin Inhibitor (I?I).- 7.7. Antithrombin III (AT III).- 7.8. Cl-Esterase Inhibitor (Cl INH).- 7.8.1. Measurement of Cl INH.- 7.8.2 Inhibition of Proteinases by Cl INH.- 7.8.3. Deficiencies of Cl INH.- 7.9. Concluding Remarks.- Addendum.- References.- 8 Growth Regulation in Vitro and the Role of Serum.- 8.1. Introduction.- 8.2. Contact Inhibition of Locomotion and Density-Dependent Inhibition of Growth.- 8.3. Density-Dependent Inhibition of Growth and Serum Requirement.- 8.4. Transformation and the Loss of Contact Inhibition of Locomotion.- 8.5. Transformation and Serum Requirement.- 8.6. Transformation and Density-Dependent Inhibition of Growth.- 8.7. Density-Dependent Inhibition of Growth: Some Conclusions.- 8.8. Anchorage Dependence and Sensitivity to Polyanions of Normal and Transformed Cells.- 8.9. Fractionation of Serum.- 8.9.1. Growth Factors.- 8.9.2. Migration Factors.- 8.9.3. Survival Factors.- 8.10. Physiological Action of Serum.- 8.11. Significance of Growth Regulation in Vitro.- References.- 9 Fractionation of Plasma Proteins.- 9.1. Introduction.- 9.2. Gel Chromatography.- 9.2.1. Outline of Principle.- 9.2.2. Gel Chromatography Media.- 9.2.3. Fractionation of Serum by Gel Chromatography.- 9.3. Ion Exchange Chromatography.- 9.3.1. Outline of Principle.- 9.3.2. Classification of Ion Exchangers.- 9.3.3. Elution Methods.- 9.3.4. Ion Exchange of Whole Serum.- 9.4. Affinity Chromatography.- 9.4.1. Definition and Brief History.- 9.4.2. Brief Outline of the Procedure.- 9.4.3. Matrix Materials.- 9.4.4. Affinity Materials (Ligands).- 9.4.5. Methods of Covalently Linking Ligand to Matrix.- 9.4.6. Preparation of Agarose Derivatives.- 9.5. Polyacrylamide Gel Electrophoresis.- 9.5.1. Gel Formation.- 9.5.2. Analytical-Scale Experiments.- 9.5.3. Radioactive Techniques and Polyacrylamide Gel Electrophoresis.- 9.5.4. Molecular-Weight Determinations Using Polyacrylamide Gel Electrophoresis.- 9.5.5. Combination of Polyacrylamide Gel Electrophoresis with Other Techniques.- 9.5.6. Preparative-Scale Polyacrylamide Gel Electrophoresis.- 9.6. Isoelectric Focusing or Electrofocusing.- 9.6.1. Principle of the Method.- 9.6.2. Properties of Ampholytes.- 9.6.3. Methods of Electrofocusing Using Natural pH Gradients.- 9.6.4. A Brief Outline of a Pract…