CHF177.90
Download est disponible immédiatement
Unique in its systematic approach to stochastic systems, this book presents a wide range of techniques that lead to novel strategies for effecting intelligent control of complex systems that are typically characterised by uncertainty, nonlinear dynamics, component failure, unpredictable disturbances, multi-modality and high dimensional spaces.
Contenu
I. Introduction.- 1. Introduction.- 1.1 Intelligent Control Systems.- 1.2 Approaches to Intelligent Control.- 1.2.1 Contribution of Adaptive Control.- 1.2.2 Contribution of Artificial Intelligence.- 1.2.3 Confluence of Adaptive Control and AI: Intelligent Control.- 1.3 Enhancing the Performance of Intelligent Control.- 1.3.1 Multiple Model Schemes: Dealing with Complexity.- 1.3.2 Stochastic Adaptive Control: Dealing with Uncertainty.- 1.4 The Objectives and their Rationale.- II. Deterministic Systems.- 2. Adaptive Control of Nonlinear Systems.- 2.1 Introduction.- 2.2 Continuous-time Systems.- 2.2.1 Control by Feedback Linearization.- 2.2.2 Control by Backstepping.- 2.2.3 Adaptive Control.- 2.3 Discrete-time Systems.- 2.3.1 Affine Approximations and Feedback Linearization.- 2.3.2 Adaptive Control.- 2.4 Summary.- 3. Dynamic Strueture Networks for Stahle Adaptive Control.- 3.1 Introduction.- 3.2 Problem Formulation.- 3.3 Fixed-structure Network Solutions.- 3.4 Dynamic Network Structure.- 3.5 The Control Law and Error Dynamies.- 3.6 The Adaptive System.- 3.7 Stability Analysis.- 3.8 Evaluation of Control Parameters and Implementation.- 3.8.1 The Disturbanee Bound.- 3.8.2 Choice of the Boundary Layer.- 3.8.3 Comments.- 3.8.4 Implementation.- 3.9 Simulation Examples.- 3.9.1 Example 1.- 3.9.2 Example 2.- 3.10 Summary.- 4. Composite Adaptive Control of Continuous-Time Systems.- 4.1 Introduetion.- 4.2 Problem Formulation.- 4.3 The Neural Networks.- 4.4 The Control Law.- 4.5 Composite Adaptation.- 4.5.1 The Identifieation Model.- 4.5.2 The Adaptation Law.- 4.6 Stability Analysis.- 4.7 Determination of the Disturbanee Bounds.- 4.8 Simulation Examples.- 4.8.1 Example 1.- 4.8.2 Example 2.- 4.9 Summary.- 5. Funetional Adaptive Control of Discrete-Time Systems.- 5.1 Introduetion.- 5.2 Problem Formulation.- 5.3 The Neural Network.- 5.4 The Control Law.- 5.5 The Adaptive System.- 5.6 Stability Analysis.- 5.7 Traeking Error Convergenee.- 5.8 Simulation Examples.- 5.8.1 Example 1.- 5.8.2 Example 2.- 5.9 Extension to Adaptive Sliding Mode Control.- 5.9.1 Definitions of a Discrete-time Sliding Mode.- 5.9.2 Adaptive Sliding Mode Control.- 5.9.3 Problem Formulation.- 5.9.4 The Control Law.- 5.9.5 The Adaptive System.- 5.9.6 Stability Analysis.- 5.9.7 Sliding and Tracking Error Convergence.- 5.9.8 Simulation Example.- 5.10 Summary.- III. Stochastic Systems.- 6. Stochastic Control.- 6.1 Introduction.- 6.2 FUndamental Principles.- 6.3 Classes of Stochastic Control Problems.- 6.4 Dual Control.- 6.4.1 Degrees of Interaction.- 6.4.2 Solutions to the Implementation Problem.- 6.5 Conclusions.- 7. Dual Adaptive Control of Nonlinear Systems.- 7.1 Introduction.- 7.2 Problem Formulation.- 7.3 Dual Controller Design.- 7.3.1 GaRBF Dual Controller.- 7.3.2 Sigmoidal MLP Dual Controller.- 7.3.3 Analysis of the Control Laws.- 7.4 Simulation Examples and Performance Evaluation.- 7.4.1 Example 1.- 7.4.2 Example 2.- 7.5 Summary.- 8. Multiple Model Approaches.- 8.1 Introduction.- 8.2 Basic Formulation.- 8.2.1 Multiple Model Adaptive Contro!..- 8.2.2 Jump Systems.- 8.3 Adaptive IO Models.- 8.3.1 Scheduled Mode Transitions.- 8.4 Summary.- 9. Multiple Model Dual Adaptive Control of Jump Nonlinear Systems.- 9.1 Introduction.- 9.2 Problem Formulation.- 9.3 The Estimation Problem.- 9.3.1 Known Mode Case.- 9.3.2 Unknown Mode Case.- 9.4 Self-organized Allocation of Local Models.- 9.5 The Control Law.- 9.5.1 Known Mode Case.- 9.5.2 Unknown Mode Case.- 9.6 Simulation Examples and Performance Evaluation.- 9.6.1 Example 1.- 9.6.2 Example 2.- 9.7 Summary.- 10. Multiple Model Dual Adaptive Control of Spatial Multimodal Systems.- 10.1 Introduction.- 10.2 Problem Formulation.- 10.3 The Modular Network.- 10.4 The Estimation Problem.- 10.4.1 Local Model Parameter Estimation.- 10.4.2 Validity Function Estimation.- 10.5 The Control Law.- 10.5.1 Known System Case.- 10.5.2 Unknown System Case.- 10.6 Simulation Examples and Performance Evaluation.- 10.6.1 Example 1.- 10.6.2 Example 2.- 10.6.3 Performance Evaluation.- 10.7 Summary.- IV. Conclusions.- 11. Conclusions.- References.