CHF118.90
Download est disponible immédiatement
The aim of this work is to present several topics in time-frequency analysis as subjects in abelian group theory. The algebraic point of view pre dominates as questions of convergence are not considered. Our approach emphasizes the unifying role played by group structures on the development of theory and algorithms. This book consists of two main parts. The first treats Weyl-Heisenberg representations over finite abelian groups and the second deals with mul tirate filter structures over free abelian groups of finite rank. In both, the methods are dimensionless and coordinate-free and apply to one and multidimensional problems. The selection of topics is not motivated by mathematical necessity but rather by simplicity. We could have developed Weyl-Heisenberg theory over free abelian groups of finite rank or more generally developed both topics over locally compact abelian groups. However, except for having to dis cuss conditions for convergence, Haar measures, and other standard topics from analysis the underlying structures would essentially be the same. A re cent collection of papers [17] provides an excellent review of time-frequency analysis over locally compact abelian groups. A further reason for limiting the scope of generality is that our results can be immediately applied to the design of algorithms and codes for time frequency processing.
Contenu
1 Review of algebra.- 1.1 Introduction.- 1.2 Definitions and examples of groups.- 1.3 Subgroups, cosets, and quotients.- 1.4 Ideals.- 1.5 Mappings.- 1.6 Finitely generated abelian groups.- 1.6.1 Cyclic groups.- 1.6.2 Free abelian groups.- References.- 2 Linear algebra and abelian groups.- 2.1 Introduction.- 2.2 Vector space L(A).- 3 Fourier transform over A.- 3.1 Introduction.- 3.2 Character groups.- 3.3 Character formulas.- 3.4 Duality theory.- 3.5 Character group basis.- 3.6 Fourier transform.- 3.7 Shift and multiplication operators.- References.- Problems.- 4 Poisson summation formula.- 4.1 Introduction.- 4.2 Statement and proof.- 4.3 Fourier transform of periodic functions.- 4.4 Periodization-decimation operators.- References.- Problems.- 5 Zak transform.- 5.1 Introduction.- 5.2 Fourier analysis on A x A*.- 5.3 Zak transform.- 5.4 Functional equation.- 5.5 Fourier and Zak transform.- 5.6 Isometry.- 5.7 Algorithm for computing Zak transform.- References.- Problems.- 6 Weyl-Heisenberg systems.- 6.1 Introduction.- 6.2 Translates.- 6.3 W-H systems.- 6.4 Sampling rates.- 6.5 Divide-and-conquer.- References.- Problems.- 7 Zak transform and W-H systems.- 7.1 Introduction.- 7.2 Basic results.- 7.3 Fundamental formulas.- 7.4 Zak space characterization of W-H systems.- 7.4.1 Critical sampling subgroup.- 7.4.2 Integer over-sampling subgroup.- 7.4.3 General sampling subgroup.- 7.5 Zero set characterization.- 7.5.1 Critical sampling subgroup.- 7.5.2 Integer over-sampling subgroup.- Problems.- 8 Algorithms for W-H systems.- 8.1 Introduction.- 8.2 Critical sampling algorithm.- 8.3 Integer over-sampling algorithm.- 8.3.1 Reducing the problem.- 8.4 General over-sampling algorithm.- 8.4.1 Reducing the problem.- References.- Problems.- 9 Orthogonal projection theorem.- 9.1 Introduction.- 9.2 Orthogonal projection algorithm.- 9.3 Iterative W-H coefficient set algorithm.- 10 Cross-ambiguity function.- 10.1 Introduction.- 10.2 Basic results.- 10.3 Direct algorithm.- 10.4 Critical sampling algorithm.- 10.5 Integer over-sampling algorithm.- 10.6 General divide-and-conquer algorithm.- References.- Problems.- 11 Ambiguity surfaces.- 11.1 Introduction.- 11.2 Fourier transform of ambiguity surfaces.- 11.3 Formulas D1 and D2.- References.- 12 Orthonormal W-H systems.- 12.1 Introduction.- 12.2 Orthonormal W-H systems.- 12.2.1 Critical sampling subgroup.- 12.2.2 Integer over-sampling subgroup.- 12.2.3 Over-sampling subgroup ?.- References.- Problems.- 13 Duality.- 13.1 Introduction.- 13.2 Biorthogonal.- 13.3 Algorithms for computing biorthogonals.- 13.3.1 ?-periodization.- 13.3.2 Critical sampling subgroup.- 13.3.3 Integer over-sampling subgroup.- 13.3.4 General over-sampling subgroup.- References.- Problems.- 14 Frames.- 14.1 Introduction.- 14.2 Frame Operator.- 14.2.1 Critical sampling subgroup.- 14.2.2 Integer over-sampling subgroup.- 14.2.3 General over-sampling subgroup.- 14.3 Frames.- 14.4 Frame biorthogonals.- 14.5 Operator interpretation.- 14.6 Tight frames.- References.- 15 Implementation.- 15.1 Introduction.- 15.2 Tensor product.- 15.3 Multidimensional arrays.- 15.3.1 Two-dimensional arrays.- 15.3.2 Multidimensional arrays.- 15.4 Computing the Zak transform.- 15.4.1 1-dimensional Zak transform.- 15.4.2 Two-dimensional Zak transform.- References.- Problems.- 16 Algebra of multirate structures.- 16.1 Introduction.- 16.2 Algebra.- 16.3 Exact sequences.- 16.4 Main theorem.- 16.5 Representatives mapping theorem.- 16.6 Integer matrices.- References.- Problems.- 17 Multirate structures.- 17.1 Introduction.- 17.2 Decimation operator.- 17.2.1 Elementary formulas.- 17.2.2 Shift-invariant operators.- 17.3 Polyphase representation.- 17.3.1 Analysis bands.- 17.3.2 Synthesis bands.- 17.4 Integer rate bands.- 17.5 Reduction theorems.- 17.5.1 Subgroup of a band.- 17.5.2 Nonuniform integer sampling rate filter banks.- 17.5.3 Rational sampling rate filter banks.- 17.6 Decimators and expanders.- References.- 18 A Time-frequency search for stock market anomalies.- 18.1 Introduction.- 18.2 Time-frequency trees.- 18.2.1 Adaptive segmentation via time-frequency trees.- 18.2.2 Recombination to a nondyadic split.- 18.3 Analysis of the log-differenced DJIA and S&P 500 data.- References.