CHF119.00
Download est disponible immédiatement
Thermoluminescence (TL) and optically stimulated luminescence (OSL) are two of the most important techniques used in radiation dosimetry. They have extensive practical applications in the monitoring of personnel radiation exposure, in medical dosimetry, environmental dosimetry, spacecraft, nuclear reactors, food irradiation etc., and in geological /archaeological dating. Thermally and Optically Stimulated Luminescence: A Simulation Approach describes these phenomena, the relevant theoretical models and their prediction, using both approximations and numerical simulation. The authors concentrate on an alternative approach in which they simulate various experimental situations by numerically solving the relevant coupled differential equations for chosen sets of parameters. Opening with a historical overview and background theory, other chapters cover experimental measurements, dose dependence, dating procedures, trapping parameters, applications, radiophotoluminescence, and effects of ionization density. Designed for practitioners, researchers and graduate students in the field of radiation dosimetry, Thermally and Optically Stimulated Luminescence provides an essential synthesis of the major developments in modeling and numerical simulations of thermally and optically stimulated processes.
Auteur
Reuven Chen
Professor Reuven Chen is a Professor Emeritus at Tel-Aviv
University. He has been working on thermoluminescence, optically
stimulated luminescence and other related topics in the last 48
years. Professor Chen has published ~170 scientific papers and two
books. He has been a Visiting Professor at several universities in
the US, Britain, Canada, Australia, Brazil, France and Hong-Kong.
At present, he is an Associate Editor of Radiation Measurements and
referee for several international journals.
Vasilis Pagonis
Professor Vasilis Pagonis is a Professor of Physics at McDaniel
College. His research involves working on modeling properties of
dosimetric materials and their applications in luminescence dating
and radiation dosimetry. Professor Pagonis has published ~70
scientific papers, as well as the book Numerical and practical
exercises in thermoluminescence, published by Springer in 2006.
He currently holds the Kopp endowed chair in the physical sciences
at McDaniel College.
Contenu
About the Authors*.
Preface*.
Acknowledgements.
1 Introduction.
1.1 The Physical Mechanism of TL and OSL Phenomena.
1.2 Historical Development of TL and OSL Dosimetry.
1.3 Historical Development of Luminescence Models.
2 Theoretical Basis of Luminescence Phenomena.
2.1 Energy Bands and Energy Levels in Crystals.
2.2 Trapping Parameters Associated with Impurities in Crystals.
2.3 Capture Rate Constants.
2.4 Thermal Equilibrium.
2.5 Detailed Balance.
2.6 Arrhenius Model.
2.7 Rate Equations in the Theory of Luminescence.
2.8 Radiative Emission and Absorption.
2.9 Mechanisms of Thermal Quenching in Dosimetric Materials.
2.10 A Kinetic Model for the MottSeitz Mechanism in Quartz.
2.11 The Thermal Quenching Model for Alumina by Nikiforov et al..
3 Basic Experimental Measurements.
3.1 General Approach to TL and OSL Phenomena.
3.2 Excitation Spectra.
3.3 Emission Spectra.
3.4 Bleaching of TL and OSL.
4 Thermoluminescence: The Equations Governing a TL Peak.
4.1 Governing Equations.
4.2 One Trap-One Recombination Center (OTOR) Model.
4.3 General-order Kinetics.
4.4 Mixed-order Kinetics.
4.5 Q and P Functions.
4.6 Localized Transitions.
4.7 Semilocalized Transition (SLT) Models of TL.
5 Basic Methods for Evaluating Trapping Parameters.
5.1 The Initial-rise Method.
5.2 Peak-shape Methods.
5.3 Methods of Various Heating Rates.
5.4 Curve Fitting.
5.5 Developing Equations for Evaluating Glow Parameters.
5.6 The Photoionization Cross Section.
6 Additional Phenomena Associated with TL.
6.1 Phosphorescence Decay.
6.2 Isothermal Decay of TL Peaks.
6.3 Anomalous Fading and Anomalous Trapping Parameters of TL.
6.4 Competition Between Excitation and Bleaching of TL.
6.5 A Model for Mid-term Fading in TL Dating; Continuum of Traps.
6.6 Photo-transferred Thermoluminescence (PTTL).
6.7 TL Response of Al2O3:C to UV Illumination.
6.8 Dependence of the TL Excitation on Absorption Coefficient.
6.9 TL Versus Impurity Concentration; Concentration Quenching.
6.10 Creation and Stabilization of TL Traps During Irradiation.
6.11 Duplicitous TL Peak due to Release of Electrons and Holes.
6.12 Simulations of the Duplicitous TL Peak.
7 Optically Stimulated Luminescence (OSL).
7.1 Basic Concepts of OSL.
7.2 Dose Dependence of OSL; Basic Considerations.
7.3 Numerical Results of OSL Dose Dependence.
7.4 Simulation of the Dose-rate Dependence of OSL.
7.5 The Role of Retrapping in the Dose Dependence of POSL.
7.6 Linear-modulation OSL (LM-OSL).
7.7 Unified Presentation of TL, Phosphorescence and LM-OSL.
7.8 The New Presentation of LM-OSL Within the OTOR Model.
7.9 TL-like Presentation of CW-OSL in the OTOR Model.
7.10 Dependence of Luminescence on Initial Occupancy; OTOR Model.
7.11 TL Expression Within the Unified Presentation.
7.12 Pseudo LM-OSL and OSL Signals under Various Stimulation Modes.
7.13 OSL Decay and Stretched-exponential Behavior.
7.14 Optically Stimulated Exoelectron Emission.
7.15 Simulations of OSL Pulsed Annealing Techniques.
8 Analytical and Approximate Expressions of Dose Dependence of TL and OSL.
8.1 General Considerations.
8.2 Competition During Excitation.
8.3 Competition During Heating.
8.4 The Predose (Sensitization) Effect. 8.5 Sensitization and De-sensitization in Quartz.</p...