CHF189.00
Download est disponible immédiatement
Bioelectrochemistry: Fundamentals, Experimental Techniques and
Application, covers the fundamental aspects of the chemistry,
physics and biology which underlie this subject area. It describes
some of the different experimental techniques that can be used to
study bioelectrochemical problems and it describes various
applications of biolelectrochemisty including amperometric
biosensors, immunoassays, electrochemistry of DNA, biofuel cells,
whole cell biosensors, in vivo applications and
bioelectrosynthesis.
By bringing together these different aspects, this work
provides a unique source of information in this
area, approaching the subject from a cross-disciplinary
viewpoint.
Auteur
Philip N. Bartlett is Head of the Electrochemistry Section, Deputy Head of Chemistry for Strategy, and Associate Dean for Enterprise in the Faculty of Natural and Environmental Sciences at the University of Southampton. He received his PhD from Imperial College London and was a Lecturer at the University of Warwick and a Professor for Physical Chemistry at the University of Bath, before moving to his current position. His research interests include bioelectrochemistry, nanostructured materials, and chemical sensors.
Texte du rabat
Bioelectrochemistry is the study and application of biological electron transfer processes. Over the last 25 years we have learnt some of the important factors which control the interaction between biological redox partners, including how to apply this knowledge and to start to design electrode surfaces, through deliberate chemical modification, so that the biological molecules will interact in a productive way with the electrode surface and facilitate efficient electron transfer. Over the same period significant parallel developments in physical electrochemistry have meant that the tools and techniques, such as in situ infrared spectroscopy, SERS, EQCM, STM and AFM, now exist to study the electrode solution interface at the molecular level. These techniques are now being used to characterise chemically modified electrode surfaces and to study their interaction with biological molecules.
Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications, covers the fundamental aspects of the chemistry, physics and biology which underlie this subject area. It describes some of the different experimental techniques that can be used to study bioelectrochemical problems and it describes various applications of bioelectrochemistry including amperometric biosensors, in vivo applications and bioelectrosynthesis.
This volume provides a modern view of the field and is appropriate for graduate students and final year undergraduate students in chemistry and biochemistry as well as researchers in related disciplines including biology,physics, physiology and pharmacology.
Résumé
Bioelectrochemistry: Fundamentals, Experimental Techniques and Application, covers the fundamental aspects of the chemistry, physics and biology which underlie this subject area. It describes some of the different experimental techniques that can be used to study bioelectrochemical problems and it describes various applications of biolelectrochemisty including amperometric biosensors, immunoassays, electrochemistry of DNA, biofuel cells, whole cell biosensors, in vivo applications and bioelectrosynthesis.
By bringing together these different aspects, this work provides a unique source of information in this area, approaching the subject from a cross-disciplinary viewpoint.
Contenu
List of Contributors.
Preface.
1 Bioenergetics and Biological Electron Transport (Philip N. Bartlett).
1.1 Introduction.
1.2 Biological Cells.
1.3 Chemiosmosis.
1.3.1 The Proton Motive Force.
1.3.2 The Synthesis of ATP.
1.4 Electron Transport Chains.
1.4.1 The Mitochondrion.
1.4.2 The NADHCoQ Reductase Complex.
1.4.3 The SuccinateCoQ Reductase Complex.
1.4.4 The CoQH2Cyt c Reductase Complex.
1.4.5 The Cyt c Oxidase Complex.
1.4.6 Electron Transport Chains in Bacteria.
1.4.7 Electron Transfer in Photosynthesis.
1.4.8 Photosystem II.
1.4.9 Cytochrome bf Complex.
1.4.10 Photosystem I.
1.4.11 Bacterial Photosynthesis.
1.5 Redox Components.
1.5.1 Quinones.
1.5.2 Flavins.
1.5.3 NAD(P)H.
1.5.4 Hemes.
1.5.5 IronSulfur Clusters.
1.5.6 Copper Centres.
1.6 Governing Principles.
1.6.1 Spatial Separation.
1.6.2 Energetics: Redox Potentials.
1.6.3 Kinetics: Electron Transfer Rate Constants.
1.6.4 Size of Proteins.
1.6.5 One-Electron and Two-Electron Couples.
1.7 ATP Synthase.
1.8 Conclusion.
References.
2 Electrochemistry of Redox Enzymes (James F. Rusling, Bingquan Wang and Sei-eok Yun).
2.1 Introduction.
2.1.1 Historical Perspective.
2.1.2 Examples of Soluble Mediators.
2.1.3 Development of Protein-Film Voltammetry and Direct Enzyme Electrochemistry.
2.2 Mediated Enzyme Electrochemistry.
2.2.1 Electron Mediation.
2.2.2 Wiring with Redox Metallopolymer Hydrogels.
2.2.3 Wiring with Conducting Polymers.
2.2.4 NAD(P)þ/NAD(P)H Dependent Enzymes.
2.2.5 Regeneration of NAD(P)H from NAD(P)þ.
2.2.6 Regeneration of NAD(P)þ from NAD(P)H.
2.3 Direct Electron Transfer between Electrodes and Enzymes.
2.3.1 Enzymes in Solution.
2.3.2 Enzyme-Film Voltammetry: Basic Theory.
2.3.3 Adsorbed and Coadsorbed Enzyme Monolayers.
2.3.4 Self-Assembled Monolayers and Covalently Attached Enzymes.
2.3.5 Enzymes on Carbon Nanotube Electrodes.
2.3.6 Enzymes in Lipid Bilayer Films.
2.3.7 Polyion Films and Layer-by-Layer Methods.
2.4 Outlook for the Future.
Acknowledgements.
References.
3 Biological Membranes and Membrane Mimics (Tibor Hianik).
3.1 Introduction.
3.2 Membrane Structure and Composition.
3.2.1 Membrane Structure.
3.2.2 Membrane Lipids.
3.2.3 Membrane Proteins.
3.3 Models of Membrane Structure.
3.3.1 Lipid Monolayers.
3.3.2 Bilayer Lipid Membranes (BLM).
3.3.3 Supported Bilayer Lipid Membranes.
3.3.4 Liposomes.
3.4 Ordering, Conformation and Molecular Dynamics of Lipid Bilayers.
3.4.1 Structural Parameters of Lipid Bilayers Measured by X-ray Diffraction.
3.4.2 Interactions between Bilayers.
3.4.3 Dynamics and Order Parameters of Bilayers Determined by EPR and NMR Spectroscopy and by Optical Spectroscopy Methods.
3.5 Phase Transitions of Lipid Bilayers.
3.5.1 Lyotropic and Thermotropic Transitions.
3.5.2 Thermodynamics of Phase Transitions.
3.5.3 TransGauche Isomerization.
3.5.4 Order Parameter.
3.5.5 Cooperativity of Transition.
3.5.6 Theory of Phase Transitions.
3.6 Mechanical Properties of Lipid Bilayers.
3.6.1 Anisotropy of Mechanical Properties of Lipid Bilayers.
3.6.2 The Model of an Elastic Bilayer.
3.6.3 Mechanical Properties of Lipid Bilayers and ProteinLipid Interactions.
3.7 Membrane Potentials.
3.7.1 Diffusion Potential.
3.7.2 Electrostatic Potentials.
3.7.3 Methods of Surface Potential Measurement.
3.8 Dielectric Relaxation. 3.8.1 The Basic Principle...