CHF175.00
Download est disponible immédiatement
Dieses klar strukturierte Fachbuch legt den Schwerpunkt auf praktische Anwendungen von Nanokompositen und Nanotechnologien im Rahmen einer nachhaltigen Entwicklung. Es zeigt, wie Nanokomposite zur Lösung von Energie- und Umweltproblemen beitragen können, bietet zusätzlich einen breiten Überblick über Anwendungen im Energiebereich und behandelt eine einzigartige Auswahl an Umweltthemen.
Der erste Teil beschäftigt sich mit Anwendungen wie Lithium-Ionen-Batterien, Solarzellen, Katalyse, Gewinnung von Wärme und Energie aus Abfällen mithilfe der Thermoelektrizität und Wasserspaltung. Der zweite Teil beleuchtet in einzigartiger Weise ökologische Themen, darunter Atommüllmanagement sowie die Abscheidung und Speicherung von Kohlendioxid. Dieses Fachbuch vermittelt auf erfolgreiche Weise Grundlagenwissen für Einsteiger als auch die neuesten Erkenntnisse für erfahrene Wissenschaftler, Ingenieure und Forscher aus der Industrie.
Auteur
Zhanhu Guo is Associate Professor in the Department of Chemical and Biomolecular Engineering at The University of Tennessee, Knoxville, USA. He received his PhD in chemical engineering from Louisiana State University, USA, followed by postdoctoral studies in mechanical and aerospace engineering at the University of California, Los Angeles, USA. He was the Chair of the Composite Division of the American Institute of Chemical Engineers in 2010-2011. Dr. Guo's Integrated Composites Laboratory focuses on multifunctional nanocomposites for energy, environmental and electronic devices applications.
Yuan Chen is Professor in the School of Chemical and Biomolecular Engineering at The University of Sydney, Australia. He received his PhD in chemical engineering from Yale University. Before joining The University of Sydney, he was Associate Professor at Nanyang Technological University, Singapore, where he served as Head of the Chemical and Biomolecular Engineering Division in 2011-2014. His research focuses on carbon nanomaterials for sustainable energy and environmental applications. He received several awards including Australian Research Council Future Fellowship in 2017 and Young Scientist Awards by the Singapore National Academy of Science in 2011.
Na (Luna) Lu is an associate professor of the Lyles School of Civil Engineering and School of Materials Engineering at Purdue University. She has research interests/ expertise in using nanotechnology to tailor a materials? (electrical, thermal, mechanical, and optical) properties for renewable energy applications, in particular, thermoelectric, piezoelectric and solar cells. Fundamentally, her group studies electron, phonon, and photon transport mechanisms for a given materials system, and designs the transport properties to meet the targeted performance. Her research work has been featured in national and regional media. She is the recipient of a 2014 National Science Foundation Yong Investigator CAREER Award.
Résumé
Focusing on real applications of nanocomposites and nanotechnologies for sustainable development, this book shows how nanocomposites can help to solve energy and environmental problems, including a broad overview of energy-related applications and a unique selection of environmental topics.
Clearly structured, the first part covers such energy-related applications as lithium ion batteries, solar cells, catalysis, thermoelectric waste heat harvesting and water splitting, while the second part provides unique perspectives on environmental fields, including nuclear waste management and carbon dioxide capture and storage.
The result is a successful combination of fundamentals for newcomers to the field and the latest results for experienced scientists, engineers, and industry researchers.
Contenu
Contents to Volume 1
Preface xiii
1 Introduction to Nanocomposites 1
*Xingru Yan and Zhanhu Guo*
References 4
2 Advanced Nanocomposite Electrodes for Lithium-Ion Batteries 7
*Jiurong Liu, Shimei Guo, Chenxi Hu, Hailong Lyu, Xingru Yan, and Zhanhu Guo*
2.1 Introduction 7
2.2 Advanced Nanocomposites as Anode Materials for LIBs 8
2.2.1 Carbonaceous Nanocomposites 9
2.2.2 Carbon-Free Nanocomposites 15
2.3 Advanced Nanocomposites as Cathode Materials for LIBs 17
2.3.1 Traditional Cathode 18
2.3.1.1 Lithium Transition Metal Oxides 19
2.3.1.2 Vanadium Oxide 19
2.3.1.3 Lithium Phosphates 20
2.3.2 Advanced Nanocomposites as Cathode Materials 21
2.3.2.1 Coating 21
2.3.2.2 Composite with Carbon Nanotubes of Graphene 24
2.3.2.3 Doping 26
References 27
3 Carbon Nanocomposites in Electrochemical Capacitor Applications 33
*Long Chen, LiliWu, and Jiahua Zhu*
3.1 Introduction 33
3.2 Working Principle of Electrochemical Capacitor 34
3.2.1 Electric Double Layer Capacitor 34
3.2.2 Pseudocapacitor 35
3.3 Characterization Techniques for Supercapacitor 36
3.3.1 Electrode Preparation and Testing Cell Assembling 36
3.3.1.1 Two-Electrode Method 36
3.3.1.2 Three-Electrode Method 37
3.3.2 Selection of Electrolyte 37
3.3.3 Energy Storage Property Evaluation 38
3.3.3.1 Capacitance 38
3.3.3.2 Energy Density and Power Density 39
3.3.3.3 Stability 40
3.4 State-of-Art Carbon Nanocomposite Electrode 41
3.4.1 Design Principles of Advanced Electrodes 41
3.4.1.1 Electrical Conductivity 41
3.4.1.2 Surface Area 42
3.4.1.3 Suitable Pore Size 42
3.4.2 Carbon/Carbon Nanocomposites 42
3.4.2.1 Graphene/CNTs 43
3.4.2.2 Graphene/Carbon Black 46
3.4.2.3 Porous Carbon/CNTs 46
3.4.3 Carbon/Metal Oxide Nanocomposites 47
3.4.3.1 Graphene/Metal Oxide 47
3.4.3.2 CNTs/Metal Oxide 49
3.4.3.3 Porous Carbon/Metal Oxide 51
3.4.4 Carbon/Conductive Polymer Nanocomposites 52
3.4.4.1 Graphene/Conductive Polymer 52
3.4.4.2 CNTs/Conductive Polymer 54
3.4.4.3 Porous Carbon/Conductive Polymer 57
3.4.4.4 Ternary Structured Nanocomposites 57
3.5 Summary 58
References 58
4 Application of Nanostructured Electrodes in Halide Perovskite Solar Cells and Electrochromic Devices 67
*Qinglong Jiang, Xiaoqiao Zeng, Le Ge, Xiangyi Luo, and Lilin He*
4.1 Application of Nanostructured Electrodes for Halide Perovskite Solar Cells 67
4.1.1 Introduction 67
4.1.2 Halide Perovskite Material 67
4.1.3 Halide Perovskite Solar Cells 68
4.1.3.1 HTM Layer for Perovskite Solar Cells 69
4.1.3.2 Cathodes 69
4.1.4 Planar Structure Photoanodes for Perovskite Solar Cell 71
4.1.5 Nanostructured Electrodes for Perovskite Solar Cell 71
4.1.5.1 Mesoscopic Nanoparticles for Perovskite Solar Cells 71
4.1.5.2 3D Nanowires for Perovskite Solar Cells 71
4.1.6 Current Challenges for Halide Perovskite Solar Cell 74
4.1.6.1 Lead and Lead-Free Perovskite Solar Cell 74
4.1.6.2 Stability 75
4.1.6.3 Summary 75
4.2 Functionalized Nanocomposites for Low Energy Consuming Optoelectronic Electrochromic Device 75
4.2.1 Electrochromism and Electrochromic Materials 75
4.2.2 Electrochromic Device 76
4.2.3 Nanostructured Electrodes for EC Devices 77
4.2.3.1 Nanotube 77
4.2.3.2 Nanowires 78
4.2.3.3 Nanoparticles 78
4.2.3.4 Conductive Nanobeads 79
4.2.4 Current Challenges in Electrochromism 82
4.3 Conclusion 82
References 83 **5 Perovskite Solar Cell 91<...