CHF177.90
Download est disponible immédiatement
This book addresses the use of MEMS and micromachined devices for the investigation of nanoscience and technology, as well as biotechnology. Such micromachined tools for nanotechnology can enhance the sensitivity, spatial resolution, dexterity, selectivity, and parallel processing capability in measuring and manipulating nano-objects. The book covers state-of-the-art MEMS and NEMS devices for DNA molecular handling and analysis, cell handling and culture on a chip, chemical lab-on-a-chip, multi-probes for vacuum tunneling microscopy and AFM, and characterization of quantum semiconductor structures. Readers will gain deep insight into such developments and students will learn about the emerging field of MEMS and nanotechnology.
Texte du rabat
Addresses the use of MEMS (micro-electro-mechanical systems) and micromachined devices for the investigation of nanoscience and technology, as well as biotechnology. Such micromachined tools for nanotechnology can enhance the sensitivity, spatial resolution, dexterity, selectivity, and parallel processing capability in measuring and manipulating nano-objects. The book covers state-of-the-art MEMS and NEMS devices for DNA molecular handling and analysis, cell handling and culture on a chip, chemical lab-on-a-chip, multi-probes for vacuum tunneling microscopy and AFM, and characterization of quantum semiconductor structures. Readers will gain deep insight into such developments and students will learn about the emerging field of MEMS and nanotechnology
Contenu
1 Micromachining Tools for Nanosystems.- 1.1 Introduction.- 1.2 Bottom-Up and Top-Down Approaches.- 1.3 Combining the Two Approaches to Nanosystems.- 1.4 Micro- and Nanomachining.- 1.5 Examples of Micromachined Nanodevices.- 1.5.1 Microprobe Arrays for Ultrahigh Density Data Storage.- 1.5.2 Multiple Nanoprobes.- 1.5.3 Microfluidic Devices Incorporating Biomaterial.- 1.6 Organization of the Book.- References.- 2 Microsystems for Single-Molecule Handling and Modification.- 2.1 Stretch-and-Positioning of DNA.- 2.2 Molecular Surgery of DNA.- 2.2.1 Laser Surgery.- 2.2.2 Mechanical Surgery with an AFM Tip.- 2.2.3 Molecular Surgery with an Enzyme-Labeled Probe.- 2.2.4 Use of Local Temperature Rise.- 2.3 A Microfabricated Probe for Molecular Surgery.- 2.4 Conclusion.- References.- 3 Manipulation of Single DNA Molecules.- 3.1 Manipulation of Giant DNA Molecules.- 3.1.1 Characteristics of Globular DNA.- 3.1.2 Suppression of Fragmentation by Globular Transition.- 3.1.3 Laser Trapping of Single DNA.- 3.2 Stretching a Giant DNA Molecule.- 3.2.1 Observation and Fixation of Single DNA.- 3.2.2 Stretching and Fixing DNA Via the Globule-Coil Transformation.- 3.3 Mapping Stretched Single DNA Molecules.- 3.3.1 Hybridization with a Probe.- 3.3.2 Restriction Map.- 3.4 Cutting Stretched DNA.- 3.4.1 Localizing Enzyme Activity by Local Temperature Control.- 3.4.2 Cutting DNA by Controlling Ionic Concentration.- 3.5 Recovery of DNA Fragments.- 3.6 Microreactors for DNA Manipulation.- 3.6.1 Production of Microreactors in Oil.- 3.6.2 Manipulation and Fusion of Microreactors.- 3.6.3 Indirect Manipulation of Globular DNA Molecules.- 3.6.4 Chemical Reaction in the W/O Microreactor System.- 3.6.5 PCR Amplification of DNA Fragments.- 3.7 Conclusion.- References.- 4 Near-Field Optics in Biology.- 4.1 Breaking the Diffraction Barrier.- 4.2 SNOAM Probe Design.- 4.3 SNOAM Configurations.- 4.4 Feedback Mechanisms for SNOAM.- 4.5 SNOAM in Aqueous Environments.- 4.6 SNOAM System Design.- 4.7 Calibration.- 4.8 Fluorescence Imaging with SNOAM.- 4.9 SNOAM Imaging of Fluorescent Beads.- 4.10 Fluorescence Profiling.- 4.11 SNOAM Imaging of Chromosomes.- 4.12 SNOAM Imaging of Recombinant Bacterial Cells Containing a Green Fluorescent Protein Gene.- 4.13 Imaging of Neurons.- 4.14 Future Development of SNOAM.- 4.14.1 Apertureless SNOAM.- 4.14.2 Vibrational Spectroscopy.- 4.14.3 Competition for SNOAM.- 4.15 Conclusion.- References.- 5 Atomic Force Microscopy for Imaging Living Organisms: From DNA to Cell Motion.- 5.1 Principles of Atomic Force Microscopy.- 5.2 Applications in Biology.- 5.2.1 Deoxyribonucleic Acid (DNA) and Chromosomes.- 5.2.2 Collagen Molecules and Collagen Fibrils.- 5.2.3 Tissue Sections.- 5.2.4 Living Cells and Their Movement.- 5.3 Other SPM Applications in Biology.- 5.4 Conclusion.- References.- 6 Expanding the Field of Application of Scanning Probe Microscopy.- 6.1 Nanotribology.- 6.1.1 An AFM with Two Optical Levers for Detecting the Trajectory of the Tip Apex.- 6.1.2 Mapping Lateral Tip Vibrations in Scanning Force Microscopy.- 6.1.3 Linear Scale Using a Crystal as Scale Reference.- 6.2 Control.- 6.3 Fabrication.- 6.3.1 Fabrication of Nanometric Oscillators for Scanning Force Microscopy.- 6.3.2 Fabrication of Nanometric Parallel Leaf Springs for Precise Linear Motion.- 6.3.3 Fabrication of Millions of Cantilevers on a Centimeter Square Chip.- 6.3.4 Strength Measurement of the Nano-Oscillator.- 6.4 Characterization.- 6.5 Conclusion.- References.- 7 Micromachined Scanning Tunneling Microscopes and Nanoprobes.- 7.1 Operating Principles and Basic Structure.- 7.2 Micro-STM Design Considerations.- 7.2.1 Basic Design of Electrostatic Actuators.- 7.2.2 Vibration Frequency of the Micro-STM.- 7.3 Surface Micromachining and Bulk Micromachining.- 7.4 Micro-STM Fabrication Technology.- 7.4.1 Surface Micromachined STM Chip Fabrication Process.- 7.4.2 Stick-Free Release of the Micromachined Structure from the Substrate.- 7.4.3 Dry Bulk Micromachined STM Chip Fabrication Process.- 7.4.4 Fabrication Process for Single-Crystal Silicon Nanowire and Nanoprobes.- 7.4.5 Nanoprobes with Bulk Micromachined Actuators.- 7.5 Characterization of the Fabricated Micro-STM.- 7.5.1 Operation in Air.- 7.5.2 Operation in Vacuum.- 7.6 Possible Applications of Micromachine STM Technology.- 7.6.1 Micromachine STM for Sub-100 nm Lithography System.- 7.6.2 Application to High-Density Data Storage.- 7.6.3 Experimental Tool for Understanding Basic Physics.- 7.7 Conclusion.- References.- 8 Nanoscale Characterization of Nanostructures and Nanodevices by Scanning Probe Microscopy.- 8.1 Micromachining Technologies in SPM.- 8.2 Scanning Tunneling Microscopy and Spectroscopy for Semiconductors.- 8.2.1 Topographic Characterization.- 8.2.2 Scanning Tunneling Spectroscopy (STS).- 8.2.3 STM Luminescence from Nanostructures.- 8.2.4 Combination of STM/STS and Laser Illumination.- 8.3 Atomic Force Microscopy (AFM) on Semiconductor Nanostructures.- 8.3.1 AFM with a Conductive Tip as a Current Probe.- 8.3.2 Scanning Capacitance Microscopy (SCM).- 8.3.3 Electrostatic Force Detection.- 8.3.4 Kelvin Probe Force Microscopy (KFM).- 8.4 Scanning Near-field Optical Microscopy (SNOM).- 8.5 Nanofabrication Processes Using STM/AFM.- 8.6 Concluding Remarks.- References.