CHF68.00
Download est disponible immédiatement
An updated and thoroughly revised third edition of the foundational text offering an introduction to physics with a comprehensive interactive website
The revised and updated third edition of Understanding Physics presents a comprehensive introduction to college-level physics. Written with today's students in mind, this compact text covers the core material required within an introductory course in a clear and engaging way. The authors - noted experts on the topic - offer an understanding of the physical universe and present the mathematical tools used in physics.
The book covers all the material required in an introductory physics course. Each topic is introduced from first principles so that the text is suitable for students without a prior background in physics. At the same time the book is designed to enable students to proceed easily to subsequent courses in physics and may be used to support such courses. Relativity and quantum mechanics are introduced at an earlier stage than is usually found in introductory textbooks and are integrated with the more 'classical' material from which they have evolved.
Worked examples and links to problems, designed to be both illustrative and challenging, are included throughout. The links to over 600 problems and their solutions, as well as links to more advanced sections, interactive problems, simulations and videos may be made by typing in the URL's which are noted throughout the text or by scanning the micro QR codes given alongside the URL's, see: http://up.ucc.ie
This new edition of this essential text:
Offers an introduction to the principles for each topic presented
Presents a comprehensive yet concise introduction to physics covering a wide range of material
Features a revised treatment of electromagnetism, specifically the more detailed treatment of electric and magnetic materials
Puts emphasis on the relationship between microscopic and macroscopic perspectives
Is structured as a foundation course for undergraduate students in physics, materials science and engineering
Has been rewritten to conform with the revised definitions of SI base units which came into force in May 2019
Written for first year physics students, the revised and updated third edition of Understanding Physics offers a foundation text and interactive website for undergraduate students in physics, materials science and engineering.
Auteur
MICHAEL MANSFIELD, PHD, is Emeritus Professor in the Department of Physics, University College Cork, Ireland. COLM O'SULLIVAN, PHD, is Emeritus Professor in the Physics Department, University College Cork, Ireland.
Contenu
Preface to third edition xv
1 Understanding the physical universe 1
1.1 The programme of physics 1
1.2 The building blocks of matter 2
1.3 Matter in bulk 4
1.4 The fundamental interactions 5
1.5 Exploring the physical universe: the scientific method 5
1.6 The role of physics; its scope and applications 7
2 Using mathematical tools in physics 9
2.1 Applying the scientific method 9
2.2 The use of variables to represent displacement and time 9
2.3 Representation of data 10
2.4 The use of differentiation in analysis: velocity and acceleration in linear motion 13
2.5 The use of integration in analysis 16
2.6 Maximum and minimum values of physical variables: general linear motion 21
2.7 Angular motion: the radian 22
2.8 The role of mathematics in physics 24
Worked examples 25
Chapter 2 problems (up.ucc.ie/2/) 27
3 The causes of motion: dynamics 29
3.1 The concept of force 29
3.2 The First law of Dynamics (Newton's first law) 30
3.3 The fundamental dynamical principle (Newton's second law) 31
3.4 Systems of units: SI 33
3.5 Time dependent forces: oscillatory motion 37
3.6 Simple harmonic motion 39
3.7 Mechanical work and energy 42
3.8 Plots of potential energy functions 45
3.9 Power 46
3.10 Energy in simple harmonic motion 47
3.11 Dissipative forces: damped harmonic motion 48
3.11.1 Trial solution technique for solving the damped harmonic motion equation (up.ucc.ie/3/11/1/) 50
3.12 Forced oscillations (up.ucc.ie/3/12/) 51
3.13 Non-linear dynamics: chaos (up.ucc.ie/3/13/) 52
3.14 Phase space representation of dynamical systems (up.ucc.ie/3/14/) 52
Worked examples 52
Chapter 3 problems (up.ucc.ie/3/) 56
4 Motion in two and three dimensions 57
4.1 Vector physical quantities 57
4.2 Vector algebra 58
4.3 Velocity and acceleration vectors 62
4.4 Force as a vector quantity: vector form of the laws of dynamics 63
4.5 Constraint forces 64
4.6 Friction 66
4.7 Motion in a circle: centripetal force 68
4.8 Motion in a circle at constant speed 69
4.9 Tangential and radial components of acceleration 71
4.10 Hybrid motion: the simple pendulum 71
4.10.1 Large angle corrections for the simple pendulum (up.ucc.ie/4/10/1/) 72
4.11 Angular quantities as vector: the cross product 72
Worked examples 75
Chapter 4 problems (up.ucc.ie/4/) 78
5 Force fields 79
5.1 Newton's law of universal gravitation 79
5.2 Force fields 80
5.3 The concept of flux 81
5.4 Gauss's law for gravitation 82
5.5 Applications of Gauss's law 84
5.6 Motion in a constant uniform field: projectiles 86
5.7 Mechanical work and energy 88
5.8 Power 93
5.9 Energy in a constant uniform field 94
5.10 Energy in an inverse square law field 94
5.11 Moment of a force: angular momentum 97
5.12 Planetary motion: circular orbits 98
5.13 Planetary motion: elliptical orbits and Kepler's laws 99
5.13.1 Conservation of the Runge-Lens vector (up.ucc.ie/5/13/1/) 100
Worked examples 101
Chapter 5 problems (up.ucc.ie/5/) 104
6 Many-body interactions 105
6.1 Newton's third law 105
6.2 The principle of conservation of momentum 108
6.3 Mechanical energy of systems of particles 109
6.4 Particle decay 110
6.5 Particle collisions 111
6.6 The centre of mass of a system of particles 115
6.7 The two-body problem: reduced mass 116
6.8 Angular momentum of a system of particles 119
6.9 Conservation principles in physics 120
Worked examples 121 Chapter 6 problems (up.ucc.ie/6/) 125</p&g...