CHF110.00
Download est disponible immédiatement
Addressing the exploding interest in bioengineering for healthcare applications, this book provides readers with detailed yet easy-to-understand guidance on biomedical device engineering. Written by prominent physicians and engineers, Medical Devices: Surgical and Image-Guided Technologies is organized into stand-alone chapters covering devices and systems in diagnostic, surgical, and implant procedures.
Assuming only basic background in math and science, the authors clearly explain the fundamentals for different systems along with such topics as engineering considerations, therapeutic techniques and applications, future trends, and more. After describing how to manage a design project for medical devices, the book examines the following:
Instruments for laparoscopic and ophthalmic surgery, plus surgical robotics
Catheters in vascular therapy and energy-based hemostatic surgical devices
Tissue ablation systems and the varied uses of lasers in medicine
Vascular and cardiovascular devices, plus circulatory support devices
Ultrasound transducers, X-ray imaging, and neuronavigation
An absolute must for biomedical engineers, Medical Devices: Surgical and Image-Guided Technologies is also an invaluable guide for students in all engineering majors and pre-med programs interested in exploring this fascinating field.
Auteur
MARTIN CULJAT, PhD, is Adjunct Assistant Professor in the
UCLA Departments of Bioengineering and Surgery and the Engineering
Research Director of the UCLA Center for Advanced Surgical and
Interventional Technology (CASIT), a research center that promotes
collaboration between medicine and engineering.
RAHUL SINGH, PhD, is Adjunct Assistant Professor in the
UCLA Departments of Bioengineering and Surgery. He leads several
collaborative research projects at the UCLA Center for Advanced
Surgical and Interventional Technology (CASIT).
HUA LEE, PhD, is Professor in the Department of
Electrical and Computer Engineering at UC Santa Barbara. Well known
for his pioneering research laboratory, Dr. Lee is also the author
of three other books on imaging technology and engineering.
Contenu
PREFACE xvii
CONTRIBUTORS xix
PART I INTRODUCTION TO MEDICAL DEVICES 1
1. Introduction 3
Martin Culjat
1.1 History of Medical Devices 3
1.2 Medical Device Terminology 6
1.3 Purpose of the Book 10
2. Design of Medical Devices 11
Gregory Nighswonger
2.1 Introduction 11
2.2 The Medical Device Design Environment 11
2.2.1 US Regulation 12
2.2.2 Differences in European Regulation 13
2.2.3 Standards 14
2.3 Basic Design Phases 15
2.3.1 Feasibility 15
2.3.2 Planning and OrganizationAssembling the Design Team 16
2.3.3 When to Involve Regulatory Affairs 17
2.3.4 Conceptualizing and Review 17
2.3.5 Testing and Refinement 20
2.3.6 Proving the Concept 20
2.3.7 Pilot Testing and Release to Manufacturing 22
2.4 Postmarket Activities 25
2.5 Final Note 25
PART II MINIMALLY INVASIVE DEVICES AND TECHNIQUES 27
3. Instrumentation for Laparoscopic Surgery 29
Camellia Racu-Keefer, Scott Um, Martin Culjat, and Erik Dutson
3.1 Introduction 29
3.2 Basic Principles 31
3.3 Laparoscopic Instrumentation 34
3.3.1 Trocars 34
3.3.2 Standard Laparoscopic Instruments 37
3.3.3 Additional Laparoscopic Instruments 42
3.3.4 Specimen Retrieval Bags 44
3.3.5 Disposable Instruments 44
3.4 Innovative Applications 45
3.5 Summary and Future Applications 46
4. Surgical Instruments in Ophthalmology 49
Allen Y. Hu, Robert M. Beardsley, and Jean-Pierre Hubschman
4.1 Introduction 49
4.2 Cataract Surgery 51
4.2.1 Basic Technique 51
4.2.2 Principles of Phacoemulsification 52
4.2.3 Phacoemulsification Instruments 54
4.2.4 Phacoemulsification Systems 55
4.2.5 Future Directions 56
4.3 Vitreoretinal Surgery 56
4.3.1 Basic Techniques 56
4.3.2 Principles of Vitrectomy 57
4.3.3 Vitrectomy Instruments 58
4.3.4 Vitrectomy Systems 60
4.3.5 Future Directions 60
4.4 Other Ophthalmic Surgical Procedures 61
4.5 Conclusion 62
5. Surgical Robotics 63
Jacob Rosen
5.1 Introduction 63
5.2 Background and Leading Concepts 63
5.2.1 HumanMachine Interfaces: System Approach 65
5.2.2 Tissue Biomechanics 70
5.2.3 Teleoperation 72
5.2.4 Image-Guided Surgery 78
5.2.5 Objective Assessment of Skill 79
5.3 Commercial Systems 80
5.3.1 ROBODOC® (Curexo Technology Corporation) 80
5.3.2 daVinci (Intuitive Surgical) 83
5.3.3 Sensei® X (Hansen Medical) 84
5.3.4 RIO® MAKOplasty (MAKO Surgical Corporation) 86
5.3.5 CyberKnife (Accuray) 89
5.3.6 Renaissance™ (Mazor Robotics) 91
5.3.7 ARTAS® System (Restoration Robotics, Inc.) 92
5.4 Trends and Future Directions 93
6. Catheters in Vascular Therapy 99
Axel Boese
6.1 Introduction 99
6.2 Historic Overview 100
6.3 Catheter Interventions 102
6.4 Catheter and Guide Wire Shapes and Configurations 105
6.4.1 Catheters 105
6.4.2 Guide Wires 113
6.5 Conclusion 116
PART III ENERGY DELIVERY DEVICES AND SYSTEMS 119
7. Energy-Based Hemostatic Surgical Devices 121
Amit P. Mulgaonkar, Warren Grundfest, and Rahul Singh
7.1 Introduction 121
7.2 History of Energy-Based Hemostasis 122
7.3 Energy-Based Surgical Methods and Their Effects on Tissues 125
7.3.1 Disambiguation 126
7.3.2 Thermal Effects on Tissues 127 7.4 Electrosurger...