CHF120.00
Download est disponible immédiatement
Provides fundamentals needed to apply impedance spectroscopy to a broad range of applications with emphasis on obtaining physically meaningful insights from measurements.
Emphasizes fundamentals applicable to a broad range of applications including corrosion, biomedical devices, semiconductors, batteries, fuel cells, coatings, analytical chemistry, electrocatalysis, materials, and sensors
Provides illustrative examples throughout the text that show how the principles are applied to common impedance problems
New Edition has improved pedagogy, with more than twice the number of examples
New Edition has more in-depth treatment of background material needed to understand impedance spectroscopy, including electrochemistry, complex variables, and differential equations
New Edition includes expanded treatment of the influence of mass transport and kinetics and reflects recent advances in understanding frequency dispersion and constant-phase elements
Auteur
Mark E. Orazem is a Distinguished Professor of Chemical Engineering at the University of Florida, adjunct professor at the Beijing University of Chemical Technology, a Fellow of the Electrochemical Society, past President of the International Society of Electrochemistry, and recipient of the 2012 ECS Linford Award for Outstanding Teaching. He organized the 6th International Symposium on Electrochemical Impedance Spectroscopy and teaches short courses on impedance spectroscopy for industry and for The Electrochemical Society. Bernard Tribollet is Director of Research Emeritus at the Laboratory for Interfaces and Electrochemical Systems (LISE) at the University of Pierre and Marie Curie and adjunct professor at the Beijing University of Chemical Technology. He instructs an annual short course at his university on impedance spectroscopy. He is a Fellow of The Electrochemical Society, Treasurer of the International Society of Electrochemistry, and organized the 2010 Annual Meeting of the International Society of Electrochemistry held in Nice, France.
Contenu
Preface to the Second Edition xvii
Preface to the First Edition xix
Acknowledgments xxiii
The Blind Men and the Elephant xxv
A Brief Introduction to Impedance Spectroscopy xxix
History of Impedance Spectroscopy xxxvii
I Background 1
1 Complex Variables 3
1.1 Why Imaginary Numbers? 3
1.2 Terminology 4
1.3 Operations Involving Complex Variables 5
1.4 Elementary Functions of Complex Variables 16
Problems 22
2 Differential Equations 25
2.1 Linear First-Order Differential Equations 25
2.2 Homogeneous Linear Second-Order Differential Equations 29
2.3 Nonhomogeneous Linear Second-Order Differential Equations 32
2.4 Chain Rule for Coordinate Transformations 36
2.5 Partial Differential Equations by Similarity Transformations 38
2.6 Differential Equations with Complex Variables 42
Problems 43
3 Statistics 45
3.1 Definitions 45
3.2 Error Propagation 53
3.3 Hypothesis Tests 59
Problems 70
4 Electrical Circuits 73
4.1 Passive Electrical Circuits 73
4.2 Fundamental Relationships 79
4.3 Nested Circuits 80
4.4 Mathematical Equivalence of Circuits 82
4.5 Graphical Representation of Circuit Response 82
Problems 85
5 Electrochemistry 87
5.1 Resistors and Electrochemical Cells 87
5.2 Polarization Behavior for Electrochemical Systems 90
5.3 Definitions of Potential 106
5.4 Rate Expressions 107
5.5 Transport Processes 111
5.6 Potential Contributions 117
5.7 Capacitance Contributions 120
5.8 Further Reading 124
Problems 125
6 Electrochemical Instrumentation 127
6.1 The Ideal Operational Amplifier 127
6.2 Elements of Electrochemical Instrumentation 129
6.3 Electrochemical Interface 131
Problems 135
II Experimental Considerations 137
7 Experimental Methods 139
7.1 Steady-State Polarization Curves 139
7.2 Transient Response to a Potential Step 140
7.3 Analysis in Frequency Domain 141
7.4 Comparison of Measurement Techniques 154
7.5 Specialized Techniques 155
Problems 160
8 Experimental Design 163
8.1 Cell Design 163
8.2 Experimental Considerations 168
8.3 Instrumentation Parameters 181
Problems 186
III Process Models 187
9 Equivalent Circuit Analogs 189
9.1 General Approach 189
9.2 Current Addition 190
9.3 Potential Addition 196
Problems 201
10 Kinetic Models 203
10.1 General Mathematical Framework 203
10.2 Electrochemical Reactions 205
10.3 Multiple Independent Electrochemical Reactions 218
10.4 Coupled Electrochemical Reactions 221
10.5 Electrochemical and Heterogeneous Chemical Reactions 229
Problems 235
11 Diffusion Impedance 237
11.1 Uniformly Accessible Electrode 238
11.2 Porous Film 239
11.3 Rotating Disk 249
11.4 Submerged Impinging Jet 259
11.5 Rotating Cylinders 262
11.6 Electrode Coated by a Porous Film 264
11.7 Impedance with Homogeneous Chemical Reactions 271
11.8 Dynamic Surface Films 280
Problems 290
12 Impedance of Materials 291
12.1 Electrical Properties of Materials 291
12.2 Dielectric Response in Homogeneous Media 292
12.3 Cole-Cole Relaxation 295
12.4 Geometric Capacitance 295
12.5 Dielectric Response of Insulating Non-Homogenous Media 297 12.6 ...