CHF56.00
Download est disponible immédiatement
Widely regarded as the most authoritative and comprehensive book in its field, the fourth edition of Fundamentals of Rock Mechanics includes new and substantially updated chapters to this highly praised text. Extensively updated throughout, this new edition contains substantially expanded chapters on poroelasticity, wave propogation, and subsurface stresses Features entirely new chapters on rock fractures and micromechanical models of rock behaviour Discusses fundamental concepts such as stress and strain Offers a thorough introduction to the subject before expertly delving into a fundamental, self-contained discussion of specific topics * Unavailable for many years, now back by popular demand. An Instructor manual CD-ROM for this title is available. Please contact our Higher Education team at href="mailto:HigherEducation@wiley.com">HigherEducation@wiley.com for more information. Reviews: "With this attention to detail, and rigorous adherence to clarity and exactness in description, this edition will consolidate the standing achieved by the earlier editions as a most authoritative and comprehensive book in its field. It will continue to serve as a leading reference work for geoscientists interested in structural geology, tectonics and petrophysics as well as for civil, mining and petroleum engineers." (Petroleum Geoscience) "...I consider this book to be an invaluable reference for studying and understanding the fundamental science at the base of rock mechanics. I believe this to be a must-have textbook and I strongly recommend it to anyone, student or professional, interested in the subject." (Rock Mechanics and Rock Engineering) "An excellent book, very well presented, and is a must for the shelves of serious engineers and scientists active or interested in the fields of rock mechanics and rock engineering.... Highly recommended." (South African Geographical Journal, 2008)
Auteur
John Conrad Jaeger received a first-class honours degree in
mathematics and physics from the University of Sydney, was Wrangler
(class I) in the Mathematical Tripos at Cambridge, and received a
DSc in applied mathematics from the University of Sydney. He was a
professor at the University of Tasmania and the Australian National
University. He was the author of several monographs in applied
mathematics, including, with H. S. Carslaw, Conduction of Heat in
Solids, and was a Fellow of the Australian Academy of Science and
the Royal Society.
Neville G. W. Cook received a BS and PhD in geophysics
from the University of Witwatersrand. He was the founder and first
director of the Mining Research Laboratory of the South African
Chamber of Mines, and in 1971 he received the Gold Medal of the
Scientific and Technical Societies, the highest scientific award in
South Africa. He was Donald H. McLaughlin Chair in Mineral
Engineering at the University of California at Berkeley, and was a
member of the U. S. National Academy of Engineering.
Robert Zimmerman received BS and MS degrees from Columbia
University, and a PhD from the University of California at
Berkeley. He has been a staff scientist in the Earth Sciences
Division of the Lawrence Berkeley National Laboratory, and Reader
in Rock Mechanics at Imperial College, London. He is currently
Professor of Engineering Geology at the Royal Institute of
Technology in Stockholm, and co-editor of the International
Journal of Rock Mechanics. He is also the author of the
monograph Compressibility of Sandstones.
Contenu
1. Rock as a Material.
1.1 Introduction.
1.2 Joints and faults.
1.3 Rock-forming minerals.
1.4 The fabric of rocks.
1.5 The mechanical nature of rock.
2. Analysis of Stress and Strain.
2.1 Introduction.
2.2 Definition of traction and stress.
2.3 Analysis of stress in two dimensions.
2.4 Graphical representations of stress in two dimensions.
2.5 Stresses in three dimensions.
2.6 Stress transformations in three dimensions.
2.7 Mohr's representation of stress in three dimensions.
2.8 Stress invariants and stress deviation.
2.9 Displacement and strain.
2.10 Infinitesimal strain in two dimensions.
2.11 Infinitesimal strain in three dimensions.
2.12 Determination of principle stresses or strains from measurements.
2.13 Compatibility equations.
2.14 Stress and strain in polar and cylindrical coordinates.
2.15 Finite strain.
3. Friction on Rock Surfaces.
3.1 Introduction.
3.2 Amonton's law.
3.3 Friction on rock surfaces.
3.4 Stick-slip oscillations.
3.5 Sliding on a plane of weakness.
3.6 Effects of time and velocity.
4. Deformation and Failure of Rock.
4.1 Introduction.
4.2 The stress-strain curve.
4.3 Effects of confining stress and temperature.
4.4 Types of fracture.
4.5 Coulomb failure criterion.
4.6 Mohr's hypothesis.
4.7 Effects of pore fluids.
4.8 Failure under true-triaxial conditions.
4.9 The effect of anisotropy on strength.
5. Linear Elasticity.
5.1 Introduction.
5.2 Stress-strain relations for an isotropic linear elastic solid.
5.3 Special cases.
5.4 Hooke's law in terms of deviatoric stresses and strains.
5.5 Equations of stress equilibrium.
5.6 Equations of stress equilibrium in cylindrical and spherical coordinates.
5.7 Airy stress functions.
5.8 Elastic strain energy and related principles.
5.9 Uniqueness theorem for elasticity problems.
5.10 Stress-strain relations for anisotropic materials.
6. Laboratory Testing of Rocks.
6.1 Introduction.
6.2 Hydrostatic tests.
6.3 Uniaxial compression.
6.4 Triaxial tests.
6.5 Stability and stiff testing machines.
6.6 True-triaxial tests.
6.7 Diametral compression of cylinders.
6.8 Torsion of circular cylinders.
6.9 Bending tests.
6.10 Hollow cylinders.
7. Poroelasticity and Thermoelasticity.
7.1 Introduction.
7.2 Hydrostatic poroelasticity.
7.3 Undrained compression.
7.4 Constitutive equations of poroelasticity.
7.5 Equations of stress equilibrium and fluid flow.
7.6 One-dimensional consolidation.
7.7 Applications of poroelasticity.
7.8 Thermoelasticity.
8. Stresses around Cavities and Excavations.
8.1 Introduction.
8.2 Complex variable method for two-dimensional elasticity problems.
8.3 Homogeneous state of stress.
8.4 Pressurised hollow cylinder.
8.5 Circular hole in a rock mass with given far-field principal stresses.
8.6 Stresses applied to a circular hole in an infinite rock mass.
8.7 Stresses applied to the surface of a solid cylinder.
8.8 Inclusions in an infinite region.
8.9 Elliptical hole in an infinite rock mass.
8.10 Stresses near a crack tip.
8.11 Nearly rectangular hole.
8.12 Spherical cavities.
8.13 Penny-shaped cracks.
8.14 Interactions between nearby cavities.
9. Inelastic Behavior.
9.1 Introduction.
9.2 Plasticity and yield. 9.3 Elastic-plastic...