CHF77.90
Download est disponible immédiatement
The fourth edition is revolutionary in comparison to the previous three editions. The format change has doubled the space to accommodate at least two to three real case applications in synthesis for each name reaction. The references are updated to 2009. Several new name reactions and reagents are included to reflect the state-of-the-art of organic chemistry. Unlike other books on name reactions in organic chemistry, Name Reactions, A Collection of Detailed Reaction Mechanisms and Synthetic Applications focuses on their mechanisms. It covers over 300 classical as well as contemporary name reactions. Each reaction is delineated by its detailed step-by-step, electron-pushing mechanism, supplemented with the original and the latest references, especially review articles. Now with addition of many synthetic applications, it is not only an indispensable resource for senior undergraduate and graduate students for learning and exams, but also a good reference book for all organic chemists interested in name reactions.
Texte du rabat
This book differs from others on name reactions in organic chemistry by focusing on their mechanisms. It covers over 300 classical as well as contemporary name reactions. Biographical sketches for the chemists who discovered or developed those name reactions have been included. Each reaction is delineated by its detailed step-by-step, electron-pushing mechanism, supplemented with the original and the latest references, especially review articles. This book contains major improvements over the previous edition and the subject index is significantly expanded.
Contenu
Alder ene reaction.- Aldol condensation.- Algar#x2014; Flynn#x2014; Oyamada Reaction.- Allan#x2013;Robinson reaction.- Arndt#x2014;Eistert homologation.- Baeyer#x2013;Villiger oxidation.- Baker#x2013;Venkataraman rearrangement.- Bamford#x2013;Stevens reaction.- Barbier coupling reaction.- Bartoli indole synthesis.- Barton radical decarboxylation.- Barton#x2013;McCombie deoxygenation.- Barton nitrite photolysis.- Batcho#x2013;Leimgruber indole synthesis.- Baylis#x2013;Hillman reaction.- Beckmann rearrangement.- Benzilic acid rearrangement.- Benzoin condensation.- Bergman cyclization.- Biginelli pyrimidone synthesis.- Birch reduction.- Bischler#x2013;M#x00F6;hlau indole synthesis.- Bischler#x2013;Napieralski reaction.- Blaise reaction.- Blum#x2013;Ittah aziridine synthesis.- Boekelheide reaction.- Boger pyridine synthesis.- Borch reductive amination.- Borsche#x2013;Drechsel cyclizations.- Boulton#x2013;Katritzky rearrangement.- Bouveault aldehyde synthesis.- Bouveault#x2014;Blanc reduction.- Bradsher reaction.- Brook rearrangement.- Brown hydroboration.- Bucherer carbazole synthesis.- Bucherer reaction.- Bucherer#x2014;Bergs reaction.- B#x00FC;chner ring expansion.- Buchwald#x2013;Hartwig amination.- Burgess reagent.- Burke boronates.- Cadiot#x2013;Chodkiewicz coupling.- Camps quinoline synthesis.- Cannizzaro reaction.- Carroll rearrangement.- Castro#x2013;Stephens coupling.- Chan alkyne reduction.- Chan#x2013;Lam C#x2013;X coupling reaction.- Chapman rearrangement.- Chichibabin pyridine synthesis.- Chugaev elimination.- Ciamician#x2013;Dennsted rearrangement.- Claisen condensation.- Claisen isoxazole synthesis.- Claisen rearrangements.- Clemmensen reduction.- Combes quinoline synthesis.- Conrad#x2013;Limpach reaction.- Cope elimination reaction.- Cope rearrangement.- Corey#x2013;Bakshi#x2013;Shibata (CBS) reagent.- Corey#x2013;Chaykovsky reaction.- Corey#x2013;Fuchs reaction.- Corey#x2013;Kim oxidation.- Corey#x2013;Nicolaou macrolactonization.- Corey#x2013;Seebach reaction.- Corey#x2013;Winter olefin synthesis.- Criegee glycol cleavage.- Criegee mechanism of ozonolysis.- Curtius rearrangement.- Dakin oxidation.- Dakin#x2013;West reaction.- Darzens condensation.- Del#x00E9;pine amine synthesis.- de Mayo reaction.- Demjanov rearrangement.- Dess#x2013;Martin periodinane oxidation.- Dieckmann condensation.- Diels#x2013;Alder reaction.- Dienone#x2013;phenol rearrangement.- Di#x2013;#x03C0;#x2013;methane rearrangement.- Doebner quinoline synthesis.- Doebner#x2013;von Miller reaction.- D#x00F6;tz reaction.- Dowd#x2013;Beckwith ring expansion.- Dudley reagent.- Erlenmeyer#x2013;Pl#x00F6;chl azlactone synthesis.- Eschenmoser#x2019;s salt.- Eschenmoser#x2013;Tanabe fragmentation.- Eschweiler#x2013;Clarke reductive alkylation of amines.- Evans aldol reaction.- Favorskii rearrangement.- Feist#x2013;B#x00E9;nary furan synthesis.- Ferrier carbocyclization.- Ferrier glycal allylic rearrangement.- Fiesselmann thiophene synthesis.- Fischer indole synthesis.- Fischer oxazole synthesis.- Fleming#x2013;Kumada oxidation.- Friedel#x2013;Crafts reaction.- Friedl#x00E4;nder quinoline synthesis.- Fries rearrangement.- Fukuyama amine synthesis.- Fukuyama reduction.- Gabriel synthesis.- Gabriel#x2013;Colman rearrangement.- Gassman indole synthesis.- Gattermann#x2013;Koch reaction.- Gewald aminothiophene synthesis.- Glaser coupling.- Gomberg#x2013;Bachmann reaction.- Gould#x2013;Jacobs reaction.- Grignard reaction.- Grob fragmentation.- Guareschi#x2013;Thorpe condensation.- Hajos#x2013;Wiechert reaction.- Haller#x2013;Bauer reaction.- Hantzsch dihydropyridine synthesis.- Hantzsch pyrrole synthesis.- Heck reaction.- Hegedus indole synthesis.- Hell#x2014;Volhard#x2014;Zelinsky reaction.- Henry nitroaldol reaction.- Hinsberg synthesis of thiophene derivatives.- Hiyama cross-coupling reaction.- Hofmann rearrangement.- Hofmann#x2013;L#x00F6;ffler#x2013;Freytag reaction.- Horner#x2014;Wadsworth#x2014;Emmons reaction.- Houben#x2013;Hoesch reaction.- Hunsdiecker#x2013;Borodin reaction.- Jacobsen#x2013;Katsuki epoxidation.- Japp#x2013;Klingemann hydrazone synthesis.- Jones oxidation.- Julia#x2013;Kocienski olefination.- Julia#x2013;Lythgoe olefination.- Kahne glycosidation.- Knoevenagel condensation.- Knorr pyrazole synthesis.- Koch#x2013;Haaf carbonylation.- Koenig#x2013;Knorr glycosidation.- Kostanecki reaction.- Kr#x000F6;hnke pyridine synthesis.- Kumada cross-coupling reaction.- Lawesson#x2019;s reagent.- Leuckart#x2013;Wallach reaction.- Lossen rearrangement.- McFadyen#x2013;Stevens reduction.- McMurry coupling.- Mannich reaction.- Martin#x2019;s sulfurane dehydrating reagent.- Masamune#x2013;Roush conditions for the Horner#x2013;Emmons reaction.- Meerwein#x2019;s salt.- Meerwein#x2013;Ponndorf#x2013;Verley reduction.- Meisenheimer complex.- [1,2]-Meisenheimer rearrangement.- [2,3]-Meisenheimer rearrangement.- Meyers oxazoline method.- Meyer#x2013;Schuster rearrangement.- Michael addition.- Michaelis#x2013;Arbuzov phosphonate synthesis.- Midland reduction.- Minisci reaction.- Mislow#x2013;Evans rearrangement.- Mitsunobu reaction.- Miyaura borylation.- Moffatt oxidation.- Morgan#x2013;Walls reaction.- Mori#x2013;Ban indole synthesis.- Mukaiyama aldol reaction.- Mukaiyama Michael addition.- Mukaiyama reagent.- Myers#x2013;Saito cyclization.- Nazarov cyclization.- Neber rearrangement.- Nef reaction.- Negishi cross-coupling reaction.- Nenitzescu indole synthesis.- Newman#x2013;Kwart rearrangement.- Nicholas reaction.- Nicolaou IBX dehydrogenation.- Noyori asymmetric hydrogenation.- Nozaki#x2013;Hiyama#x2013;Kishi reaction.- Nysted reagent.- Oppenauer oxidation.- Overman rearrangement.- Paal thiophene synthesis.- Paal#x2013;Knorr furan synthesis.- Paal#x2013;Knorr pyrrole synthesis.- Parham cyclization.- Passerini reaction.- Patern#x00F3;#x2013;B#x00FC;chi reaction.- Pauson#x2013;Khand reaction.- Payne rearrangement.- Pechmann coumarin synthesis.- Perkin reaction.- Petasis reaction.- Petasis reagent.- Peterson olefination.- Pictet#x2013;Gams isoquinoline synthesis.- Pictet#x2013;Spengler tetrahydroisoquinoline synthesis.- Pinacol rearrangement.- Pinner reaction.- Polonovski reaction.- Polonovski#x2013;Potier reaction.- Pomeranz#x2013;Fritsch reaction.- Pr#x00E9;vost trans-dihydroxylation.- Prins reaction.- Pschorr cyclization.- Pummerer rearrangement.- Ramberg#x2013;B#x00…