CHF297.00
Download est disponible immédiatement
Materialien, die zum Zweck bestimmter, erwünschter Eigenschaften sowohl aus organischen als auch anorganischen Komponenten zusammen gesetzt werden, bezeichnet man als 'functional hybrid materials'. Der hybride Aufbau zielt darauf ab, die jeweiligen vorteilhaften chemischen, elektrochemischen, magnetischen oder optischen Eigenschaften der Einzelkomponenten so zu kombinieren, dass sich neue, in ihren Eigenschaften überlegene Materialien ergeben.
Die größte Herausforderung auf diesem Gebiet ist daher, Komponenten so zu kombinieren, dass sich ihre positiven Eigenschaften verstärken und ihre jeweiligen Schwächen oder Nachteile ausgeglichen oder zumindest reduziert werden, oder sich zu völlig neuem Materialverhalten ergänzen. Durch die Vielfalt an Bausteinen für solche Hybridmaterialien hat sich ein entsprechend großes, vielseitiges Arbeitsgebiet aufgetan, über das das herausragende Autorenkollektiv breit gefächert und ausführlich berichtet und dabei die Überlegenheit sorgfältig konzipierter funktionaler Hybridmaterialien eindrucksvoll demonstriert.
Auteur
Pedro Gómez-Romero is a senior research scientist at the materials Science Institute of Barcelona (CSIC), Spain, where he leads a research group working on nanocomposites hybrid materials combining conducting polymers and oxides, clusters and active molecular species, developing energy storage and conversion applications such as duel cells, lithium batteries and supercapacitors. He obtained his B.S. and M.S. from the University of Valencia and his Ph.D. in Chemistry at Georgetown University, USA. He was a visiting scientist at the National Renewable Energy Laboratory at Golden (Co, USA) during 1998 and 1999 as a NATO senior fellow. Popularizing science is Dr. Gómez-Romero's favorite creative activity outside the lab and, aside from his more than one hundred scientific publications, he has authored an award-winning book and many popular science articles.
He is a member of the American Association for the Advancement of Science, the American Chemical Society, the materials Research Society, and the Electrochemical Society.
Clément Sanchez is Director of Research at the CNRS, heads the laboratory for condensed matter chemistry at University of Paris VI, and furthermore holds a professional teaching position at École Polytechnique. He studied chemistry at ENSC Paris, received his Ph.D. from the University Pierre et Marie Curie, Paris, and held a post-doctoral position at UC Berkeley, USA.
His main scientific interest focus on the study of the relationship between the optical and mechanical properties and the structures of molecularly designed hybrid materials, and on self-assembly processes to build hybrid and inorganic materials organized and textured at different length scales ranging from nano to macro sizes. He is recipient of several awards from IBM, the Société Chimique de France and the French Academy of Science as well as the CNRD Silver Medal. He is editor-in-chief of the New journal of Chemistry and co-author of over 250 scientific publications. He has also given over 50 invited lectures at international meetings.
Résumé
Functional Hybrid Materials consist of both organic and inorganic components, assembled for the purpose of generating desirable properties and functionalities. The aim is twofold: to bring out or enhance advantageous chemical, electrochemical, magnetic or electronic characteristics and at the same time to reduce or wholly suppress undesirable properties or effects. Another target is the creation of entirely new material behavior.
The vast number of hybrid material components available has opened up a wide and diversified field of fascinating research. In this book, a team of highly renowned experts gives an in-depth overview, illustrating the superiority of well-designed hybrid materials and their potential applications.
Contenu
Preface.
1 Hybrid Materials, Functional Applications. An Introduction (Pedro Gómez-Romero and Clément Sanchez).
1.1 From Ancient Tradition to 21st Century Materials.
1.2 Hybrid Materials. Types and Classifications.
1.3 General Strategies for the Design of Functional Hybrids.
1.4 The Road Ahead.
2 Organic-Inorganic Materials: From Intercalation Chemistry to Devices (Eduardo Ruiz-Hitzky).
2.1 Introduction.
2.2 Types of Hybrid Organic-Inorganic Materials.
2.2.1 Intercalation Compounds.
2.2.1.1 Intercalation of Ionic Species.
2.2.1.2 Intercalation of Neutral Species.
2.2.1.3 Polymer Intercalations: Nanocomposites.
2.2.2 Organic Derivatives of Inorganic Solids.
2.2.3 Sol-Gel Hybrid Materials.
2.3 Functions & Devices Based on Organic-Inorganic Solids.
2.3.1 Selective Sorbents, Complexing Agents & Membranes.
2.3.2 Heterogeneous Catalysts & Supported Reagents.
2.3.3 Photoactive, Opt ical and Opto-Electronic Materials & Devices.
2.3.4 Electrical Behaviors: Ionic & Electronic Conductors.
2.3.5 Electroactivity & Electrochemical Devices.
2.4 Conclusions.
3 Bridged Polysilsesquioxanes. Molecular-Engineering Nanostructured Hybrid Organic-Inorganic Materials (K. J. Shea, J. Moreau, D. A. Loy, R. J. P. Corriu, B. Boury).
3.1 Introduction.
3.2 Historical Background.
3.3 Monomer Synthesis.
3.3.1 Metallation.
3.3.2 Hydrosilylation.
3.3.3 Functionalization of an Organotrialkoxysilane.
3.3.4 Other Approaches.
3.4 Sol-Gel Processing of Bridged Polysilsesquioxanes.
3.4.1 Hydrolysis and Condensation.
3.4.2 Gelation.
3.4.3 Aging and Drying.
3.5 Characterization of Bridged Polysilsesquioxanes.
3.5.1 Porosity in Bridged Polysilsesquioxanes.
3.5.2 Pore Size Control.
3.5.3 Pore Templating.
3.6 Influence of Bridging Group on Nanostructures.
3.6.1 Surfactant Templated Mesoporous Materials.
3.6.2 Mesogenic Bridging Groups.
3.6.3 Supramolecular Organization.
3.6.4 Metal Templating.
3.7 Thermal Stability and Mechanical Properties.
3.8 Chemical Properties.
3.9 Applications.
3.9.1 Optics and Electronics.
3.9.1.1 Dyes.
3.9.1.2 Nano- and Quantum Dots in Bridged Polysilsesquioxanes.
3.9.2 Separations Media.
3.9.3 Catalyst Supports and Catalysts.
3.9.4 Metal and Organic Adsorbents.
3.10 Summary.
4 Porous Inorganic-Organic Hybrid Materials (Nicola Hüsing and Ulrich Schubert).
4.1 Introduction.
4.2 Inorganic-Network Formation.
4.3 Preparation and Properties.
4.3.1 Aerogels.
4.3.2 M41S materials.
4.4 Methods for Introducing Organic Groups into Inorganic Materials.
4.5 Porous Inorganic-Organic Hybrid Materials.
4.5.1 Functionalization of Porous Inorganic Materials by Organic Groups.
4.5.1.1 Post-synthesis Modification.
4.5.1.2 Liquid-Phase Modification in the Wet Gel Stage or Prior to Surfactant Removal.
4.5.1.3 Addition of Non-Reactive Compounds to the Precursor Solution.
4.5.1.4 Use of Organically Substituted Co-precursors.
4.5.2 Bridged Silsequioxanes.
4.5.3 Incorporation of Metal Complexes for Catalysis.
4.5.4 Incorporation of Biomolecules.
4.5.5 Incorporation of Polymers.
4.5.6 Creation of Carbon Structures.
5 Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites (Clément Sanchez, Bénédicte Lebeau, Frédéric Chaput and Jean-Pierre Boilot).
5.1 Introduction.
5.2 Hybrids with Emission Properties.
5.2.1 Solid-State Dye-Laser Hybrid Materials.
5.2.2 Electroluminescent Hybrid Materials.
5.2.3 Optical Properties of Lanthanide Doped Hybrid Materials. 5.2.3.1 Encapsulatio...