20%
268.90
CHF215.10
Download est disponible immédiatement
Emphasis is placed on the elaborate cuticular matrices in insects and crustaceans, spider and insect silks, sialomes of phytophagous and blood-feeding arthropods as well as on secretions of male and female accessory glands. Focus is placed largely on insects, due to the extensive body of published research that in part is the result of available whole genome sequences of several model species (in particular Drosophila melanogaster) and accessible ESTs for other species. Such advances have facilitated fundamental insights into genomic, proteomic and molecular biology-based physiology. This new volume contains comprehensive contributions on extracellular composite matrices in arthropods. The building blocks of such matrices are formed in and secreted by single layered epithelial cells into exterior domains where their final assembly takes place.Additionally, the unique mechanical properties of natural biocomposites like chitin/chitosan, the crustacean mineralized exoskeleton, the pliant protein resilin or insect and spider silks, have inspired basic and applied research that yield sophistical biomimetics and structural biocomposite hybrids important for future industrial and biomedical use. In summary, this book provides an invaluable vast source of basic and applied information for a plethora of scientists as well as textbook for graduate and advanced undergraduate students.
Auteur
Prof. Ephraim Cohen is the Morris and Helen Mauerberger Chair in Agricultural Entomology Academic degrees and appointments: 1972 Lecturer -Tel Aviv University 2000-2003 Head Dept. of Entomology 2001 Chairperson of the Steering Committee for Biological and Chemical Residues in Animals and Animal Products, Ministry of Agriculture, Israel The Hebrew University: 1978 Senior Lecturer 1985 Associate Professor 1990 Professor 1986-1989 Head, Plant Protection Studies 2000 Head, Dept. of Entomology 2004 The Morris Helen Mauerberger Chair in Agricultural Entomology Research Associate at University of California, Berkeley, California (Environmental Chemistry and Toxicology Laboratory) 1977-1979; 1983-1984; 1989; 1994-1995. 1998-1999 University of Melbourne, Melbourne, Australia 2004-2005 University of Sydney, Sydney, Australia.
Contenu
Part A Skeletal matrices 1 Genes of Cuticular Proteins and their Regulation - H. Kawasaki1.1 Recent Classification of Cuticular Proteins and the Construction of Cuticular Layers1.2 Factors that Affect the Expression of Cuticular Proteins1.3 Application of Genome Information1.4 Regulation of Gene Expression of Cuticular Proteins1.5 Future Prospects2 Chitin Synthetic and Degradation Pathways - S. Muthukrishnan, Y. Arakane, H. Merzendorfer and Q. yang2.1 Introduction2.2 Structure of Chitin2.3 Higher Order Structures Involving Chitin Fibers in the Cuticle2.4 Higher Order Structures in the Peritrophic Matrix2.5 Precursors of Chitin and generation of Activated Substrates2.6 Towards the Mode of Action of Insect Chitin Synthases2.7 Regulation of Chitin Synthesis2.8 Chitin deacetylation and Possible Role in Cuticle Assembly2.9 Chitin deacetylases in Insects2.10 Chitin Degradation 2.11 Chitinolytic N-Acetylglucosaminidase and their Genes2.12 Additional Proteins Involved in Chitin Protection and Degradation2.13 Cuticular Proteins Analogous to Peritrophins2.14 Cuticular Proteins Belonging to R&R and Other Groups2.15 Concluding Remarks3 Molecular model of skeletal organization and differentiation - B. Moussian3.1 Introduction3.2 Cuticles of Model Insects3.3 Conceptual model of cuticle differentiation3.4 Outlook4 Resilin The Pliant Protein - J. Michels, E. Appel, S.N. Gorb4.1 Introduction4.2 Biochemistry and molecular biology4.3 Identification and visualization of resilin4.4 Mechanical properties of resilin4.5 Occurrence and function in different systems4.6 Biomimetics4.7 Conclusions and outlook5 The Mineralized Exoskeletons of Crustaceans - S. Bentov, S. Abehsera and A. Sagi5.1 Introduction5.2 The advantage of mineralization5.3 Degree of mineralization5.4 Degree of crystallization5.5 The combination of calcium carbonate and calcium phosphate5.6 Involvement of proteins and genes5.7 Potential biomimetic applications inspired by the crustacean exoskeleton5.8 Concluding remarks6 Tyrosine Metabolism in Insect Cuticle Pigmentation and Sclerotization - M. Y. Noh, T. Asano, J. J. Kramer and Y. Arakane6.1 Introduction6.2 Functions of Key Enzymes/Proteins Involved in Cuticle Pigmentation and Sclerotization6.3 Interactions and Functions of Pigments in Insects6.4 Hormonal Regulation of Cuticle Pigmentation 6.5 Future Prospects and Concluding Remarks7 Cuticular Hydrocarbons: Biochemistry and Chemical Ecology - M. D. Ginzel and G. J. Blomquist 7.1 Introduction7.2 Chemical Composition of Insect Hydrocarbons7.3 &am...