Brachytherapy is continuously advancing. Years of accumulated experience have led to clinical evidence of its benefit in numerous clinical sites such as gynecological, prostate, breast, rectum, ocular, and many other cancers. Brachytherapy continues to expand in its scope of practice and complexity, driven by strong academic and commercial research, by advances in competing modalities, and due to the diversity in the political and economic landscape. It is a true challenge for practicing professionals and students to readily grasp the overarching trends of the field, especially of those technologies and innovative practices that are not yet established but are certainly on the rise. Addressing this challenge, Emerging Technologies in Brachytherapy presents a comprehensive collection of chapters on the latest trending/emerging technologies and expert opinions.
Auteur
Dr. William Y. Song is the Head of the Department of Medical Physics at the Odette Cancer Centre, Sunnybrook Health Sciences Centre, in Toronto, Canada. This is one of the largest medical physics units in the world with 50+ staff. Along with a busy external beam radiotherapy program, the centre sees close to 600 brachytherapy patients a year, making it the busiest program in Canada. Since joining the centre in 2014, he has been an Associate Professor in the Department of Radiation Oncology, Adjunct Professor in the Institute of Medical Sciences, Institute of Biomaterials and Biomedical Engineering, and Department of Mechanical and Industrial Engineering, at the University of Toronto. He is also an Adjunct Professor in the Department of Physics, at the Ryerson University, Toronto, Canada. He received his PhD degree in 2006 at the University of Western Ontario, London, Canada, on the topic of image guided treatment approaches for prostate cancer. Since then, he has pursued research in the field of image guidance systems, 4D motion management technologies, and brachytherapy, resulting in over 50+ peer-reviewed publications and 130+ conference abstracts. Along the way, he became a fully certified medical physicist (American Board of Radiology, 2010), directly supervised(ing) 20+ MSc and PhD graduate students, an ad hoc reviewer for 20+ research journals, and is a member of the Board of Associate Editors for the Journal of Medical Physics. In brachytherapy particular, his research focus has been in developing novel applicators and MR image processing techniques that enhances plan quality and plan quality evaluations; one in particular, in cleverly designing MR-compatible metal alloys to create non-isotropic dose distributions that can, in combination with inverse planning, gain exceptional dosimetric conformality for use in image guided adaptive brachytherapy.
1400 patients, and this material is currently generating a wealth of clinical evidence on outcome as well as dose and effect relationships.
Dr. Bradley R. Pieters, MD, PhD, is the Head of the Brachytherapy department at the Academic Medical Center in Amsterdam, The Netherlands. The AMC has a focus on Brachytherapy, Hyperthermia, and Image-guided radiotherapy. He was trained as radiation oncologist at the Radboud University Hospital in Nijmegen, The Netherlands. Because of his interest in brachytherapy he followed at the end of the residency a brachytherapy fellowship at the Daniel den Hoed clinic in Rotterdam and L'Institut Gustav-Roussy in Villejuif, France. Dr. Pieters received his MSc in epidemiology in 2006. In 2010 he received his PhD degree at the University of Amsterdam after defending his thesis "Pulsed-dose rate brachytherapy in prostate cancer." Dr. Pieters' main field of interest is general brachytherapy with an emphasis on urologic brachytherapy, gynecologic brachytherapy, and pediatric brachytherapy. His research topics focus on prostate brachytherapy; development of advanced treatment planning optimization algorithms; external beam and brachytherapy dose summation in cervical cancer; and late effects assessment in pediatric brachytherapy. In his role as leader of the brachytherapy research group he supervises PhD students and contributed to more than 40 peer-reviewed papers with the majority concerning brachytherapy topics. He is one of the co-editors of Journal of Contemporary Brachytherapy and is member of the Editorial Board of Brachytherapy. For the GEC-ESTRO (Group Europeén de Curiethérapie-European Society for Radiotherapy and Oncology) he contributes as course director for the 'Comprehensive and Practical Brachytherapy' course and is member of the GEC-ESTRO Committee.
Contenu
Introduction
Sources and Loading Technologies
Applicators
Applicator Reconstruction
Dose Calculation
Dose Optimization
Image Processing for Brachytherapy
FMEA for Brachytherapy
Real-Time In Vivo Dosimetry
Quality Assurance Technologies
Additive Manufacturing (3D Printing) in Brachytherapy
Robotics in Brachytherapy
Optical Imaging and Navigation Technologies
Ultrasound
X-Ray and Computed Tomography
Magnetic Resonance Imaging
Positron Emission Tomography
Imaging for Treatment Verification
Medical University of Vienna, Vienna, Austria
University Medical Center Utrecht, Utrecht, The Netherlands
Emerging Technologies in Brachytherapy
Hospital Charles Lemoyne, Montreal, Canada
Sunnybrook Health Sciences Centre, Toronto, Canada
Princess Margaret Cancer Centre, Toronto, Canada
Tata Memorial Hospital, Mumbai, India
Institut Joliot-Curie Cancer Center, Dakar, Senegal: Implementing a Brachytherapy Program in a Resource Limited Setting
EBRT or Brachytherapy?
Particle Therapy or Brachytherapy?
Is Brachytherapy Cost Effective?
Elekta Brachytherapy
Eckert & Ziegler BEBIG