CHF99.00
Download est disponible immédiatement
Design and Construction of Coordination Polymers
Edited by
Mao-Chun Hong
Ling Chen
A Unique Resource on coordination Polymers
Coordination polymers are a growing, interdisciplinary field
with numerous potential applications in chemistry and materials.
Design and Construction of Coordination Polymers provides a
comprehensive introduction to this field, focusing on synthetic
strategies, structures, properties, and potential applications.
Each chapter provides a unique perspective on coordination
polymers, offering a dedicated approach as well as deeper insights
on the most important facets of this interdisciplinary area.
Combining the consistent editorial approach of a textbook with
the up-to-date data and topics usually found in the latest
monographs and handbooks, Design and Construction of Coordination
Polymers offers an unparalleled reference to the state of the art.
Among other topics, it covers:
Coordination polymers with versatile structures
Crystal engineering of coordination polymers
Organic/inorganic hybrid complexes based on
polyoxometalates
Molecular-based magnetic and ferroelectric compounds
Heavy main-group iodometalates
Gas storage MOFs
Bioinorganic coordination complexes
Addressing a wide range of readers, Design and Construction of
Coordination Polymers will prove an invaluable resource to everyone
from senior-level undergraduate and graduate students to working
scientists.
Auteur
Mao-Chun Hong is Professor and Director of the Fujian Institute
of Research on the Structure of Matter (FIRSM) at the Chinese
Academy of Sciences (CAS). He was selected as the member of CAS in
Ling Chen is Professor of the Fujian Institute of Research on
the Structure of Matter (FIRSM) at the Chinese Academy of Sciences
(CAS). She received her MS from Beijing Normal University and her
PhD from FIRSM, CAS, in 1999, and concluded her postdoctoral
research at Iowa State University from 2000 to 2003. Professor Chen
won an award in the "One Hundred Talent Project" from CAS in 2003.
Her group's research efforts focus on inorganic and materials
chemistry dealing with synthesis, characterization, and
understanding of novel solid-state functional materials, especially
thermoelectric multinary antimonides and tellurides.
Résumé
Design and Construction of Coordination Polymers
Edited by
Mao-Chun Hong
Ling Chen
A Unique Resource on coordination Polymers
Coordination polymers are a growing, interdisciplinary field with numerous potential applications in chemistry and materials. Design and Construction of Coordination Polymers provides a comprehensive introduction to this field, focusing on synthetic strategies, structures, properties, and potential applications. Each chapter provides a unique perspective on coordination polymers, offering a dedicated approach as well as deeper insights on the most important facets of this interdisciplinary area.
Combining the consistent editorial approach of a textbook with the up-to-date data and topics usually found in the latest monographs and handbooks, Design and Construction of Coordination Polymers offers an unparalleled reference to the state of the art. Among other topics, it covers:
Contenu
Contributors.
Preface.
1 Coordinative Flexibility of Monovalent Silver in [AgI!L1]L2 Complexes (Gerd Meyer, Muhamet Sehabi, and Ingo Pantenburg).
1.1 Introduction.
1.2 Ligands L1 with 1,2 N-Donor Functions.
1.3 Ligands L1 with 1,3 N-Donor Functions.
1.4 Ligands L1 with 1,4 N-Donor Functions.
1.5 Conclusions.
References.
2 Indium(III)Organic Coordination Polymers with Versatile Topological Structures Based on Multicarboxylate Ligands (Lian Chen, Fei-Long Jiang, Zheng-Zhong Lin, and Mao-Chun Hong).
2.1 Introduction.
2.2 Architectures Constructed by In(III) and Benzenedicarboxylates.
2.3 Architectures Constructed by In(III) and Benzenetricarboxylates.
2.4 Architectures Constructed by In(III) and Other Benzenemulticarboxylates.
2.5 Luminescence, Ion Exchange, and Hydrogen Storage.
2.6 Conclusions.
References.
3 Crystal Engineering of Coordination Polymers via Solvothermal In Situ MetalLigand Reactions (Jie-Peng Zhang and Xiao-Ming Chen).
3.1 Introduction.
3.2 Metal-Redox Reaction.
3.3 Conversion of Carboxylic Acid.
3.4 CarbonCarbon Bond Formation.
3.5 Heterocycle Formation from Small Molecules.
3.6 Transformation of Sulfur-Containing Ligands.
3.7 Conclusions.
References.
4 Construction of Some OrganicInorganic Hybrid Complexes Based on Polyoxometalates (Can-Zhong Lu, Quan-Guo Zhai, Xiao-Yuan Wu, Li-Juan Chen, Shu-Mei Chen, Zhen-Guo Zhao, and Xiao-Yu Jiang).
4.1 Introduction.
4.2 Complexes Built Up by POMs with 1,2,4-Triazolate and Its Derivatives.
4.3 Complexes Built Up by Molybdenum Oxide Chains with Pyridine Derivatives.
4.4 Conclusions.
References.
5 Silver(I) Coordination Polymers (Cheng-Yong Su, Chun-Long Chen, Jian-Yong Zhang, and Bei-Sheng Kang).
5.1 Introduction.
5.2 Coordination Geometries of Ag þ Ions.
5.3 Ligands in Silver(I) Coordination Polymers.
5.4 Supramolecular Interactions and Counter Anions in Silver(I) Coordination Polymers.
5.5 One- to Three-Dimensional Coordination Polymers Based on SilverLigand Coordination Bonds.
5.6 Intertwining or Interpenetrating of Silver(I) Coordination Polymers.
5.7 Properties of Silver(I) Coordination Polymers.
References.
6 Tuning Structures and Properties of Coordination Polymers by the Noncoordinating Backbone of Bridging Ligands (Miao Du and Xian-He Bu).
6.1 Introduction.
6.2 Ligand Design for Coordination Polymers.
6.3 Role of Noncoordinating Backbones of Bridging Ligands.
6.4 Conclusions.
References.
7 Ferroelectric MetalOrganic Coordination Compounds (Heng-Yun Ye, Wen Zhang, and Ren-Gen Xiong).
7.1 Introduction.
7.2 Homochiral Discrete or Zero-Dimensional MOCCs.
7.3 Acentric MOCPs Produced by Supramolecular Crystal Engineering.
7.4 Homochiral MOCPs Constructed with Optical Organic Ligands.
7.5 Conclusions.
References.
8 Constructing Magnetic Molecular Solids by Employing Three-Atom Ligands as Bridges (Xin-Yi Wang, Zhe-Ming Wang, and Song Gao).
8.1 Introduction.
8.2 Coordination Characteristics of Three-Atom Bridges and Their Role in Mediating Magnetic Interaction.
8.3 Co-Ligands, Templating Cations, and Other Short Bridges.
8.4 Magnetic Molecular Solids Based on Three-Atom Bridges.
8.5 Conclusions.
References.
9 Structures and Properties of Heavy Main-Group Iodometalates (Li-Ming Wu and Ling Chen).
9.1 Introduction.
9.2 Structural Features of Iodobismuthates and Iodoplumbates.
9.3 Structural Modification.
9.4 Optical and Thermal Properties.
9.5 Summary. Referen...