CHF239.00
Download est disponible immédiatement
The purpose of designing this book is to discuss and analyze security protocols available for communication. Objective is to discuss protocols across all layers of TCP/IP stack and also to discuss protocols independent to the stack. Authors will be aiming to identify the best set of security protocols for the similar applications and will also be identifying the drawbacks of existing protocols. The authors will be also suggesting new protocols if any.
Auteur
S. Balamurugan is the Director of Research and Development, Intelligent Research Consultancy Services(iRCS), Coimbatore, Tamilnadu, India. He also serves as R&D Consultant for many companies, startups, SMEs and MSMEs. He has published 40 books, 200+ articles in international journals/conferences as well as 27 patents. He is Editor-in-Chief of Information Science Letters and International Journal of Robotics and Artificial Intelligence. His research interests include artificial intelligence, IoT, big data analytics, cloud computing, industrial automation and wearable computing. He is a life member of IEEE, ACM, ISTE and CSI. Dinesh Goyal received his PhD in 2014 on "Secure Video Transmission in a Cloud Network" and is now Dean of Academics as well as a member of the Dept. of Computer Science & Engineering, Suresh Gyan Vihar University, India. His research interests are related to information & network security, image processing, data analytics and cloud computing. O. P. Verma is the Principal at GB Pant Govt. Engineering College, New Delhi, India. Previously, he was at the Department of Computer Science & Engineering, Delhi Technical University, New Delhi, India. His research interests include image processing, soft computing, machine learning, evolutionary computing. Sheng-Lung Peng is a Professor of the Department of Computer Science and Information Engineering at National Dong Hwa University, Hualien, Taiwan. He received PhD degree in Computer Science from the National Tsing Hua University, Taiwan. He is an honorary Professor of Beijing Information Science and Technology University of China, a supervisor of the Chinese Information Literacy Association and of the Association of Algorithms and Computation Theory. His research interests are in designing and analyzing algorithms for bioinformatics, combinatorics, data mining, and networks. He has published more than 100 international conference and journal papers.
Texte du rabat
The book combines analysis and comparison of various security protocols such as HTTP, SMTP, RTP, RTCP, FTP, UDP for mobile or multimedia streaming security protocol. Over the past few decades, digital communication has grown by leaps and bounds. The expanding use of the internet in our day-to-day lives has resulted in a six-fold increase in the number of internet users in the past two decades alone, leading to an evolution of technologies for home use such as cloud computing, artificial intelligence, big data analytics and machine learning. However, insecurity or loss of information continues to be a major concern with multiple cases across the globe of breach of information or platforms leading to loss of data, money, faith and much more. There are many different security protocols for various types of applications of the internet like email, web browsing, webchat, video streaming, cloud-based communication, closed group communication, banking transactions, e-commerce and many more both at network level and user end. Security has evolved to counter many kinds of attacks like intrusion, manipulation, spoofing and so on, for which techniques like cryptography, message digest, digital signature, steganography, watermarking, time stamping, access control, etc., have been incorporated into various layers of communication, resulting in protocols like HTTP, SMTP, RTP, RTCP, FTP, UDP and many more. The 16 chapters in this book, all written by subject matter experts, analyze and compare the various protocols which might act as a Mobile Communication Security Protocol or Multimedia Streaming Security Protocol. The main goal of the book is to help the engineer proper utilize the correct security application for the application at hand. Audience Research scholars and engineers working in the area of security protocols for communication will find this book a handy reference guide. Software and hardware engineers, who work specifically in the area of communication protocols, will find this book a useful resource as all the security protocols it covers are compared and compiled in one place, thus ensuring their proper utilization. In addition, graduate and post-graduate students will find this book an ideal guide in courses on electronics and communication engineering, telecommunication engineering, network engineering, computer science and engineering and information technology.
Contenu
Preface xiii
1 History and Generations of Security Protocols 1
*Bright Keswani, Poonam Keswani and Rakhi Purohit*
1.1 Introduction 2
1.2 Network Security 2
1.3 Historical Background of Network Security and Network Timeline 4
1.4 Internet Architecture and Security Aspects 5
1.4.1 IPv4 and IPv6 Architecture 6
1.4.1.1 Structure of IPv4 6
1.4.1.2 IPv6 Architecture 7
1.4.2 Attack Through IPv4 8
1.4.2.1 Internet Attacks Common Methods 8
1.4.2.2 Internet Security Technology 10
1.4.3 IPv6 IP Security Issues 11
1.5 Different Aspects of Security of the Network 12
1.6 Evolution of Security Protocols for Network 13
1.6.1 Understanding the Key Components of Network Security 13
1.6.2 A Deep Defense Strategy 14
1.6.3 How Does the Next Generation Network Security System Work Best 15
1.7 Network Security Protocols 17
1.7.1 Application Layer 17
1.7.1.1 Good Privacy (PGP) 17
1.7.1.2 Email/Multipurpose Security (S/MIME) 18
1.7.1.3 HTTP Secure (S-HTTP) 18
1.7.1.4 Hypertext Transfer Protocol (HTTPS) in Secure Sockets Layer 19
1.7.1.5 Secure E-Commerce (SET) 19
1.7.1.6 Kerberos 19
1.7.2 Transport Layer 20
1.7.2.1 Secure Sockets Layer (SSL) 20
1.7.2.2 Transport Layer Security (TLS) 21
1.7.3 Network Layer 21
1.7.3.1 Internet Protocol Security (IPSec) 22
1.7.3.2 Virtual Private Network (VPN) 23
1.7.4 Data Link Layer 24
1.7.4.1 Point-to-Point Protocol (PPP) 24
1.7.4.2 Remote Authentication User Service (RADIO) 24
1.7.4.3 Terminal System Access Control Access Control Equipment (TACACS +) 25
1.8 Current Evolution of Red Security 25
1.8.1 Hardware Development 25
1.8.2 Software Development 27
1.9 Future Security Trends 27
References 27
2 Evolution of Information Security Algorithms 29
*Anurag Jagetiya and C. Rama Krishna*
2.1 Introduction to Conventional Encryption 30
2.2 Classical Encryption Techniques 31
2.2.1 Substitution Based 32
2.2.1.1 Caesar Cipher 32
2.2.1.2 Monoalphabetic Cipher 32
2.2.1.3 Playfair Cipher 33
2.2.1.4 Polyalphabetic Cipher 35
2.2.2 Transposition Based 36
2.2.2.1 Simple Columnar 36
2.2.2.2 Rail Fence Cipher 37
2.3 Evolutions of Modern Security Techniques 38
2.3.1 Stream Cipher Algorithms 38
2.3.1.1 One Time Pad (OTP) 40
2.3.1.2 RC-4 41
2.3.1.3 A5/1 43
2.3.2 Block Cipher Algorithms 44
2.3.2.1 Feistel Cipher Structure 46
2.3.2.2 Data Encryption Standard (DES) 48
2.3.2.3 Triple Data Encryption Standard (TDES) 56
2.3.2.4 International Data Encryption Algorithm (IDEA) 58
2.3.2.5 Blowfish 60
2.3.2.6 CAST-128 62
2.4 Conclusion 66
References 67
Practice Set 67
Review Questions and Exercises 70
3 Philosophy of Security by Cryptostakes Schemes 79
*Hemant Kumar Saini*
3.1 Philosophy of Public Key Cryptosystems (p-k Cryptography) 79
3.2 RSA Algorithm 81
3.3 Security Analysis of RSA 84
3.4 Exponentiation in Modular Arithmetic 85
3.5 Distribution of Public Keys 87
3.6 Distribution of Secret Keys Using Public Key Cryptosys…