CHF162.00
Download est disponible immédiatement
This series provides a useful, applications-oriented forum for the next generation of macromolecules and materials. The sixth volume in this series provides useful descriptions of the transition metals and their applications, edited by high-quality team of macromolecular experts from around the world.
Auteur
Dr. Alaa Abd-El-Aziz is Professor of Chemistry and the Associate Vice-President of Research & Graduate Studies at the University of Winnipeg.
Dr. Charles Carraher is Professor of Chemistry at Florida Atlantic University and Associate Director of the Florida Center for Environmental Studies.
Dr. Charles Pittman has a B.S. in Chemical Engineering from Lafayette College and a Ph.D. in Organic Chemistry from Pennsylvania State University. He completed postdoctoral studies with G. A. Olah, and served on active duty at the U.S. Army University of Alabama. He was appointed Full Professor in 1975 and University Research Professor in 1977. Dr. Pittman came to Mississippi State in 1983 as Professor of Industrial Chemistry and Catalysis. He is also Research Director of the University/Industry Chemical Research Center.
Martin Zeldin is Visiting Senior Research Scholar at the University of Richmond in Virginia. He received his Ph.D. in inorganic chemistry in 1968 from Pennsylvania State University.
Contenu
Preface.
Series Preface.
1. Introduction (Alaa S. Abd-El-Aziz and Charles E. Carraher Jr.).
I. Coverage.
II. General Concepts.
III. Historical.
IV. Polymers Containing Bis(Cyclopentadienyl) Metal Complexes.
A. Polymerization of Olefin-Functionalized Metallocenes.
B. Alkyne Metathesis Polymerization of Substituted Metallocenes.
C. Polycondensation of Metallocenes.
D. Ring-Opening Polymerization.
E. Coordination of Metals to Cyclopentadienyl Rings.
F. Introduction of Metallocenes into Preformed Polymers.
V. Arene-Transition Metal Polymers.
A. Polymerization of Olefin-Containing Arenes.
B. Ring-Opening Metathesis Polymerization of Substituted Norbornenes.
C. Nucleophilic Aromatic Substitution Polymerization of Chloroarene Complexes.
D. Polycondensation of Arene Complexes.
E. Coordination of Organometallic Moieties to Arenes.
F. Supramolecular Assembly of Polymers.
VI. Polymers with Metal-Coordinated Cyclobutadienes.
VII. Polymers Containing Metal Carbonyl Complexes.
VIII. Polymers with Metal-Carbon Bonds.
A. Transition Metal Polyynes.
B. Metal-Aryl and Metal-Alkyl Systems.
IX. MetalMetal Bonded Systems.
X. Conclusion.
XI. References.
2. Lithographic Applications of Highly Metallized Polyferrocenylsilanes (Alison Y. Cheng, Scott B. Clendenning, and Ian Manners).
I. Introduction.
II. Polyferrocenylsilanes as Electron Beam Lithography Resists.
III. Polyferrocenylsilanes as Reactive Ion Etch Resists.
IV. Polyferrocenylsilanes as UV Photoresists.
V. Conclusions.
VI. Acknowledgments.
VII. References.
3. Polymers Possessing Reactive Metallacycles in the Mainchain (Ikuyoshi Tomita).
I. Introduction.
II. Synthesis and Reactions of Organometallic Polymers Possessing Metallacycles in the Mainchain.
A. Cobaltacyclopentadiene-Containing Polymers.
B. Conversion of Cobaltacyclopentadiene-Containing Polymers into Polymers Possessing Various Mainchain Structures.
i. Conversion into Other Organometallic Polymers.
ii. Conversion into Organic Polymers with Various Functional Groups in the Mainchain.
C. Synthesis and Reactions of Titanacycle-Containing Polymers.
i. Polymers Containing Titanacyclopentadiene Unit in the Mainchain.
ii. Polymers Possessing Other Titanacycle Units.
III. Summary.
IV. References.
4. Mechanistic Aspects of the Photodegradation of Polymers Containing MetalMetal Bonds Along Their Backbones (David R. Tyler).
I. Introduction.
II. General Overview of Polymer Photodegradation.
A. The Auto-Oxidation Mechanism.
B. Reactions of Hydroperoxide Species That Lead to Backbone Degradation.
C. Other Photochemical Degradation Mechanisms.
D. Methods for Intentionally Making Polymers Photodegradable.
III. MetalMetal Bond-Containing Polymers.
A. Synthesis and Characterization.
B. Synthesis of the Difunctional Dimers.
C. Synthesis of the Polymers.
D. Characterization of the Polymers.
E. Photochemical Reactions in Solution.
F. Photochemistry in the Solid State.
IV. Factors Controlling the Rate of Photochemical Degradation.
A. Cage Effects.
B. The Effect of Tensile Stress on Photodegradation.
i. Theories of Stress-Induced Photodegradation.
ii. Stress-Induced Changes in homolysis; the Plotnikov Hypothesis.
iii. Stress-Induced Changes in krecombination; the Decreased Radical Recombination Efficiency Hypothesis.
iv. Stress-Induced Changes in the Rates of Radical Reactions Subsequent to Radical Formation.
v. The Zhurkov Equation.
vi. Quantum Yields as a Function of Stress for Polymer 3. C. Other Factors Affecting Photochem...