Prix bas
CHF49.10
L'exemplaire sera recherché pour vous.
Pas de droit de retour !
The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between Grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments. This special issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems highlights some of the major challenges emerging from the biomedical applications that are currently inspiring and promoting database research. These include the management, organization, and integration of massive amounts of heterogeneous data; the semantic gap between high-level research questions and low-level data; and privacy and efficiency. The contributions cover a large variety of biological and medical applications, including genome-wide association studies, epidemic research, and neuroscience.
Focuses on the integration of database technology and biomedical research Discusses the challenges arising in the face of the huge quantities of heterogeneous data available today Of interest to both biomedical researchers and the database community
Texte du rabat
The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between Grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments.
This special issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems highlights some of the major challenges emerging from the biomedical applications that are currently inspiring and promoting database research. These include the management, organization, and integration of massive amounts of heterogeneous data; the semantic gap between high-level research questions and low-level data; and privacy and efficiency. The contributions cover a large variety of biological and medical applications, including genome-wide association studies, epidemic research, and neuroscience.
Contenu
A Database System for Electrophysiological.-Management of Genotyping-Related Documents by Integrated Use of Semantic Tagging.-MEDCollector: Multisource Epidemic Data Collector.-Supporting BioMedical Information Retrieval: The BioTracer Approach.-Electronic Health Record Data-as-a-Services Composition Based on Query Rewriting.-A Modular Database Architecture Enabled to Comparative Sequence Analysis.-[KD3] A Workflow-Based Application for Exploration of Biomedical Data Sets.-A Secured Collaborative Model for Data Integration in Life Sciences.-Flexible-ICA Algorithm for a Reliable Iris Recognition.