Prix bas
CHF112.80
Impression sur demande - l'exemplaire sera recherché pour vous.
Plasma proteins are of interest from many points of view. Biochemists have separated and purified numerous plasma proteins and studied their physical properties, amino acid composition and sequence, the carbohydrate com ponents of some, and binding of metals, hormones, and other materials. Much work has also been carried out on the synthesis, rates of turnoverr, and degradation of plasma proteins. Many plasma proteins show inherited variations, some of which (e.g., those of heptoglobins and transferrins) are common in various human popu lations while others (e.g., absence of lipoproteins or immunoglobins) are rare but important because of their association with clinical syndromes. Since blood is the most accessible bodily constituent, geneticists have made good use of serum protein differences as genetic markers in family and popula tion studies. Physiologists have long been interested in plasma proteins in relation to colloid osmotic pressure; transport of lipids, iron, hormones, and other ma terials; the activities of renal glomeruli and tubules; the function of the liver, and many other bodily activities. Plasma proteins are also widely studied in relation to malnutrition and undernutrition, particularly that associated with defective intake of protein.
Contenu
1 Ontogeny of Human Plasma Proteins: Detection of the Onset and Site of Synthesis Using Genetic Markers and in Vitro Cultures.- 1.1. Introduction.- 1.2. Immunoglobulins.- 1.3. Complement.- 1.4. Haptoglobin System.- 1.5. Transferrins.- 1.6. ?-Lipoprotein Variants: The Ag and Lp Systems.- 1.7. Group-Specific Components: The Gc System.- 1.8. ?1-Antitrypsin: The Pi System.- 1.9. Ceruloplasmin.- 1.10. Other Adult Plasma Proteins.- 1.11. Fetal Proteins.- 1.12. ?-Fetoprotein (AFP).- 1.13. Carcinoembryonic Antigen.- 1.14. Fetal Sulfoglycoprotein Antigen (FSA).- 1.15. Other Fetal Proteins Associated with Cancer.- 1.16. Conclusion.- References.- 2 Transferrin.- 2.1. Introduction.- 2.2. Historical.- 2.3. Physicochemical Properties of Transferrin.- 2.4. The Metal-Binding Sites.- 2.5. Functions of Transferrin.- 2.6. Distribution and Metabolism.- 2.7. Conclusion.- References.- 3 Albumin Synthesis and Degradation.- 3.1. Introduction.- 3.2. Evolution and Variants.- 3.3. Albumin Metabolism.- 3.4. Albumin Transport.- 3.5. Development and Normal Values for Albumin Metabolism.- 3.6. Nutritional Control.- 3.7. Hormonal Effects.- 3.8. Osmotic Regulation.- 3.9. Environmental Effects.- 3.10. Degradation.- Addendum.- References.- 4 Turnover of Plasma Proteins.- 4.1. Introduction.- 4.2. Measurement of Protein Turnover.- 4.3. Mechanisms of Synthesis and Degradation of Liver-Produced Plasma Proteins.- 4.4. Regulation of Protein Turnover.- 4.5. Summary.- References.- 5 The Role of Sialic Acid in the Catabolism of Plasma Glycoproteins.- 5.1. Introduction.- 5.2. A Unified Mechanism for Turnover and Catabolism.- 5.3. Physiological Significance of Desialylation of Plasma Glycoproteins.- 5.4. Disorders of Glycoprotein Catabolism.- References.- 6 Catabolism of Plasma Proteins.- 6.1. Introduction.-6.2. Preparation of Labeled Proteins for Metabolic Studies.- 6.3. Some Considerations about Sites of Catabolism.- 6.4. Organs Involved in Plasma Protein Catabolism.- 6.5. Is the Catabolism of Plasma Proteins a One-Step Process?.- 6.6. Concluding Remarks.- References.- 7 Plasma Proteinase Inhibitors.- 7.1. Introduction.- 7.2. The Identification and Separation of Plasma Proteinase Inhibitors.- 7.3. ?1-Antichymotrypsin.- 7.4. ?1-Globulin Trypsin Inhibitor (?1-TI).- 7.5. ?2-Macroglobulin (?2-M).- 7.6. Inter-?-Trypsin Inhibitor (I?I).- 7.7. Antithrombin III (AT III).- 7.8. Cl-Esterase Inhibitor (Cl INH).- 7.9. Concluding Remarks.- Addendum.- References.- 8 Growth Regulation in Vitro and the Role of Serum.- 8.1. Introduction.- 8.2. Contact Inhibition of Locomotion and Density-Dependent Inhibition of Growth.- 8.3. Density-Dependent Inhibition of Growth and Serum Requirement.- 8.4. Transformation and the Loss of Contact Inhibition of Locomotion.- 8.5. Transformation and Serum Requirement.- 8.6. Transformation and Density-Dependent Inhibition of Growth.- 8.7. Density-Dependent Inhibition of Growth: Some Conclusions.- 8.8. Anchorage Dependence and Sensitivity to Polyanions of Normal and Transformed Cells.- 8.9. Fractionation of Serum.- 8.10. Physiological Action of Serum.- 8.11. Significance of Growth Regulation in Vitro.- References.- 9 Fractionation of Plasma Proteins.- 9.1. Introduction.- 9.2. Gel Chromatography.- 9.3. Ion Exchange Chromatography.- 9.4. Affinity Chromatography.- 9.5. Polyacrylamide Gel Electrophoresis.- 9.6. Isoelectric Focusing or Electrofocusing.- 9.7. Two-Dimensional Immunoelectrophoresis (Laurell Technique).- 9.8. Isotachophoresis.- 9.9. Two-Phase Separation Systems.- 9.10. Evidence of Denaturation.- Addendum.- References.- 10 Protein Chemistry ina General Hospital.- 10.1. Introduction.- 10.2. Methods of Protein AnalysisGeneral Aspects.- 10.3. Chemical and Physical Methods for the Determination of Serum Proteins.- 10.4. Immunochemical Methods for the Measurement and Examination of Serum Proteins.- 10.5. Monoclonal Protein Increases.- 10.6. Plasma Proteins and Disease.- 10.7. Hypogammaglobulinemia.- 10.8. Hypergammaglobulinemia.- 10.9. Renal Disease.- 10.10. Central Nervous System.- 10.11. Gastrointestinal Disease.- 10.12. Liver Disease.- 10.13. Respiratory Disease.- 10.14. Skin Disease.- 10.15. Cardiovascular Disease.- 10.16. Pediatrics.- 10.17. Cryoproteinemia.- 10.18. Protein Changes in Association with Neoplasia.- References.