Prix bas
CHF187.20
Pas encore publié, en attente pour février
Geophysics helps us understand how our planet works by connecting complex real-world phenomena with fundamental physical laws. It provides the tools, both conceptual and quantitative, for understanding interactions between the different components of the Earth System: the solid earth, oceans, atmosphere, and biosphere.Earth System Geophysics is a comprehensive textbook for upper-level undergraduate and graduate students in the Earth sciences that uses Earth System Science as the framework for learning about geophysics.About this volume: Presents convection as the underlying paradigm that drives the Earth System Uses math and physics in an accessible way to understand processes on and within the Earth Frames natural processes and events in terms of cause and effect Builds gradually from basic to advanced concepts and equations Develops quantitative skills through applied examples Heavily referenced, allowing students to pursue topics in greater depth Relevant for students from across the physical sciences and engineering
Auteur
Steven R. Dickman, Binghamton University, USA
Texte du rabat
Earth System Geophysics Geophysics helps us understand how our planet works by connecting complex real-world phenomena with fundamental physical laws. It provides the tools, both conceptual and quantitative, for understanding interactions between the different components of the Earth System: the solid earth, oceans, atmosphere, and biosphere. Earth System Geophysics is a comprehensive textbook for upper-level undergraduate and graduate students in the Earth sciences that uses Earth System Science as the framework for learning about geophysics. About this volume:
Résumé
A textbook that approaches geophysics from an Earth System Science perspective Geophysics helps us to understand how our planet works by connecting complex real-world phenomena with fundamental physical laws. It provides the tools for understanding interactions between the different components of the Earth System: the solid earth, oceans, atmosphere, and biosphere. Earth System Geophysics is a comprehensive textbook for upper-level undergraduate and graduate students in the Earth sciences that uses Earth System Science as the framework for learning in geophysics. Volume highlights include: Presents convection as the underlying paradigm that drives the Earth System Uses math and physics in an accessible way to understand processes on Earth Frames natural processes and events in terms of cause and effect Builds gradually from basic to advanced concepts and equations Develops quantitative skills through applied examples Heavily referenced, allowing students to pursue topics in greater depth * Relevant for students from across the physical sciences and engineering The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.
Contenu
Preface xvii
Acknowledgments xvii
About the Companion Website xix
Part I An Earth System Science Framework
1 The Birth of the Earth 3
1.0 Motivation 3
1.1 The Formation of the Solar System 3
1.1.1 Overview: Contrasting Theories Versus Solar System Basics 3
1.1.2 A Monistic Description of Solar System Formation 7
1.2 Properties of the Solar System 37
1.2.1 The Spacing of the Planetary Orbits 37
1.2.2 Moment of Inertia: A Diagnostic Tool for Planetary Interiors 42
1.2.3 A Brief Description of the Properties of Planets and Moons 45
1.3 Life in the Solar System, and Beyond 49
1.3.1 The Search for Planets 49
1.3.2 Evidence for Life in the Universe 54
1.3.3 Evidence for Life in Our Solar System 57
2 The Evolution of Earth's Atmosphere 71
2.0 Motivation 71
2.1 The Differentiation of the Earth 72
2.1.1 A Core by Condensation? 72
2.1.2 An Act of Differentiation Created the Core 74
2.1.3 Consequences of Core Formation 75
2.2 The Faint Young Sun 86
2.2.1 The Young Sun's Changing Luminosity Was Inevitable 87
2.2.2 A Paradox, and Its Resolution 88
2.2.3 The Urey Cycle 90
2.3 Constraints on the Evolution of Atmospheric CO 2 94
2.3.1 Levels of CO 2 Were (Relatively) Low During Ice House Climates 94
2.3.2 Other Approaches, and a Synthesis 97
2.4 The Development of an Oxygen Atmosphere 99
2.4.1 A Mostly Geology-Based Chronology of the Rise of Oxygen on Earth 100
2.4.2 Oxygen and Evolution: An Overview 112
2.4.3 Oxygen Chronology: A Synthesis 116
3 The Climate System and the Future of Earth's Atmosphere 119
3.0 Motivation 119
The Climate System 120
3.1 The Circulation of the Atmosphere 120
3.1.1 The Sun Is the Ultimate Driving Force 120
3.1.2 Basic Concepts Underlying Atmospheric Circulation 122
3.1.3 Global Atmospheric Circulation on a Nonrotating Earth 123
3.1.4 Global Atmospheric Circulation on the Rotating Earth 124
3.1.5 Complications of the Three-Cell Model 125
3.1.6 Implications of the Three-Cell Model for Climate and Regional Circulation 128
3.1.7 A Brief Jovian Perspective 131
3.1.8 Jet Streams in the Atmosphere 133
3.1.9 Hurricanes 136
3.2 The Circulation of the Oceans 136
3.2.1 Thermohaline Convection 137
3.2.2 Wind-Driven Circulation 143
3.2.3 The Wind-Driven Oceans Move Heat, Too 147
3.3 El Niño and the Southern Oscillation: A Coupled Atmosphere-Ocean Phenomenon 150
3.3.1 El Niño 150
3.3.2 Southern Oscillation 151
3.3.3 The Mechanism of a Strong ENSO Event 155
3.3.4 The Mechanism of a Weak ENSO Event 158
3.3.5 The Return to Normalcy 159
3.3.6 There's an Even Bigger Picture 160
The Immediate Future of Our Atmosphere 163
3.4 Preliminary Comments 163
3.5 Solar Variability on Human Timescales 163
3.5.1 Sunspot Cycles 163
3.5.2 A Connection Between Sunspots and a Dramatic Change in Earth's Climate? 165
3.5.3 A Few Final Comments on Sunspots 169
3.6 Anthropogenic Variations in Climate by the Emission of Greenhouse Gases 169
3.6.1 Increases in Greenhouse Gas Abundances 170
3.6.2 Direct and Indirect Impacts on Climate Expected From an Increase in Greenhouse Gas Abundances 173
3.6.3 Tempered Expectations: Complications in How These Consequences Play Out 185
3.6.4 Anthropogenic Variations in Climate: Evidence Concerning Direct Consequences (-If You Insist) 193
3.6.5 Anthropogenic Variations in Climate: Evidence Concerning Indirect Consequences 201
3.6.6 Anthropogenic Climate Change: Some Final Thoughts 222
A Geophysical Perspective: The Rest of This Textbook 223
Part II a Planet Driven by Convection
4 Basics of Gravity and the Shape of the Earth 227
4.0 Motivation 227
4.1 The Nature of Gravity 228
4.1.1 Simple Expressions of the Law of Gravitation 228
4.2 Newton's Second Law and the Gravity Field 235
4.2.1 Cause and Effect, Mass and Weight 235
4.2.2 Earth's Gravity Field, and the Answer to a Really Fundamental Question 236
4.2.3 Weighing the Earth 239
4.3 The Gravity Field of a Three-Dimensional Earth 242
4.3.1 A Guiding Principle 242
4.3.2 Mor…