Prix bas
CHF140.00
Habituellement expédié sous 2 à 4 semaines.
Auteur
Professor Simon R. Saunders is an independent communication systems advisor with extensive background from industry (including Google, Motorola, Philips, Small Cell Forum), academia (University of Surrey, University of Bristol) and policy & regulation (Ofcom, UK Government). He has written over 150 articles, books and book chapters, invented over 15 patented wireless technologies and served on technical advisory boards of several companies and universities. Dr. Alejandro Aragón-Zavala is an Associate Research Professor (Tecnológico de Monterrey, Querétaro, Mexico), an Associate Consultant and Wireless Expert (Real Wireless UK, iBwave Canada). He is the author of over 60 research papers, three printed books, three e-books and several book chapters. His research areas include wireless communications, indoor radio propagation and high-altitude platforms.
Texte du rabat
Comprehensive resource describing both fundamentals and practical industry applications of antennas and radio propagation employed in modern wireless communication systems The newly revised and thoroughly updated Third Edition of this classic and popular text, Antennas and Propagation for Wireless Communication Systems addresses fundamentals and practical applications of antennas and radio propagation commonly used in modern wireless communication systems, from the basic electromagnetic principles to the characteristics of the technology employed in the most recent systems deployed, with an outlook of forthcoming developments in the field. Core topics include fundamental electromagnetic principles underlying propagation and antennas, basic concepts of antennas and their application to specific wireless systems, propagation measurement, modelling, and prediction for fixed links, macrocells, microcells, femtocells, picocells, megacells, and narrowband and wideband channel modelling with the effect of the channel on communication system performance. Worked examples and specific assignments for students are presented throughout the text (with a solutions manual available for course tutors), with a dedicated website containing online calculators and additional resources, plus details of simple measurements that students can perform with off-the-shelf equipment, such as their laptops and a Wi-Fi card. This Third Edition of Antennas and Propagation for Wireless Communication Systems has been thoroughly revised and updated, expanding on and adding brand new coverage of sample topics such as:
Contenu
Preface xxiii
About the Companion Website xxvii
1 Introduction: The Wireless Communication Channel 1
1.1 Introduction 1
1.2 Concept of a Wireless Channel 1
1.3 The Electromagnetic Spectrum 5
1.4 Spectrum Management and Regulation 6
1.5 History 7
1.6 System Types 7
1.7 Aims of Cellular Systems 12
1.8 An Overview of Wireless Technologies 13
1.9 Multiple Access Schemes and Duplexing 32
1.10 The Mobile Broadband Revolution 35
1.11 Structure of This Book 37
1.12 Conclusion 38
2 Properties of Electromagnetic Waves 41
2.1 Introduction 41
2.2 Maxwell's Equations 41
2.3 Summary of Maxwell's Equations 44
2.4 The Wave Equation 44
2.5 Plane Wave Properties 45
2.6 Polarisation 50
2.7 Conclusion 52
3 Propagation Mechanisms 55
3.1 Introduction 55
3.2 Reflection, Refraction and Transmission 55
3.3 Rough Surface Scattering 63
3.4 Geometrical Optics 66
3.5 Diffraction 68
3.6 Conclusion 76
4 Antenna Fundamentals 79
4.1 Introduction 79
4.2 Principles 79
4.3 Antenna Parameters 83
4.4 Practical Dipoles 91
4.5 Antenna Arrays 95
4.6 Horn Antennas 99
4.7 Loop Antennas 100
4.8 Helical Antennas 101
4.9 Patch Antennas 101
4.10 Lens Antennas 102
4.11 Conclusion 104
5 Basic Propagation Models 109
5.1 Introduction 109
5.2 Definition of Path Loss 109
5.3 A Brief Note on Decibels 112
5.4 Noise Modelling 112
5.5 Free Space Loss 116
5.6 Plane Earth Loss 118
5.7 Link Budgets 120
5.8 Conclusion 122
6 Terrestrial Fixed Links 125
6.1 Introduction 125
6.2 Path Profiles 125
6.3 Tropospheric Refraction 128
6.4 Obstruction Loss 133
6.5 Approximate Multiple Knife-Edge Diffraction 135
6.6 The Multiple-Edge Diffraction Integral 140
6.7 Diffraction Over Objects of Finite Size 147
6.8 Other Methods for Predicting Terrain Diffraction 148
6.9 Propagation in Vegetation 153
6.10 Propagation in Tropical Environments 159
6.11 Antennas for Fixed Terrestrial Links 164
6.12 Conclusion 165
7 Satellite Fixed Links and High Altitude Platforms 171
7.1 Introduction 171
7.2 Tropospheric Effects 172
7.3 Ionospheric Effects 187
7.4 Satellite Earth Stations 191
7.5 High-altitude Platforms (HAPS) 195
7.6 Conclusion 201
8 Wide Area Coverage: Macrocells and Broadcasting 205
8.1 Introduction 205
8.2 Definition of Parameters 206
8.3 Empirical Path Loss Models 206
8.4 Physical Models 217
8.5 ITU-R Models 226
8.6 Hybrid Models -- Measurement-based Prediction (MbP) 228
8.7 Comparison of Models 230
8.8 Computerised Planning Tools 231
8.9 Cellular Base Station Site Engineering 231
8.10 Broadcasting Systems 242
8.11 Conclusion 246
9 Shadowing 251
9.1 Introduction 251
9.2 Statistical Characterisation 251
9.3 Physical Basis for Shadowing 252
9.4 Impact on Coverage 253
9.5 Location Variability 258
9.6 Correlated Shadowing 260
9.7 Conclusion 268
10 Narrowband Fast Fading 273
10.1 Introduction 273
10.2 Baseband Channel Representation 273
10.3 The AWGN Channel 274
10.4 The Narrowband Fading Channel 277
10.5 When Does Fading Occur in Practice? 278
10.6 The Rayleigh Distribution 279
10.7 Distribution of the SNR for a Rayleigh Channel 282
10.8 The Rice Distribution 285
10.9 The Nakagami-m Distribution 289
10.10 Other Fast-Fading Distributions 290
10.11 Second-Order Fast-Fading Statistics 292
10.12 Autocorrelation Function 299
10.13 Narrowband Mobile Radio Channel Simulations 302
10.14 Conclusion 302
11 Wideband Fast Fading 305
11.1 Introduction 305
11.2 Effect of Wideband Fading 306
11.3 Wideband Channel Model 309
11.4 Wideband Channel Parameters 310
11.5 Frequency Domain Effects 315
11.6 The Bello Functions 316
11.7 Wideband Fading in Fixed Links 317
11.8 Overcoming Wideband Channel Impairments 318
11.9 Conclusion 318
12 Microcells 321
12.1 Introduction 321
12.2 Empirical Models 322
12.3 Physical Models 332
12.4 Line-of-Sight Models 333
12.5 Non-Line-of-Sight Models 340
12.6 Discussion 346
12.7 Microcell Shadowing 346
12.8 Narrowband Fading 348
12.9 Wideband Effects 348
12.10 Conclusion 349
13 Picocells 353
13.1 Introduction 353
13.2 Empirical Models of Propagation Within Buildings 353
13.3 Physical Models …