Prix bas
CHF116.95
Cet article manque chez l'éditeur. Il sera livré dès que possible.
Auteur
Richard G. Lyons is a consulting Systems Engineer and lecturer with Besser Associates in Mountain View, California. He is author of the book "Understanding Digital Signal Processing", editor and contributor to the book "Streamlining Digital Signal Processing", and has authored numerous articles on DSP. Lyons has taught DSP at the University of California Santa Cruz Extension and recently received the IEEE Signal Processing Society's 2012 Educator of the Year award.
Texte du rabat
Understanding Digital Signal Processing, 3/e is simply the best practitioner's resource for mastering DSP technology. Richard Lyons has thoroughly updated and expanded his best-selling second edition, building on the exceptionally readable coverage that has made it a favorite of both professionals and students worldwide. Lyons achieves the perfect balance between practice and math, making DSP accessible to beginners without ever oversimplifying it, and offering systematic practical guidance for day-to-day problem-solving. Down-to-earth, intuitive, and example-rich, this book helps readers thoroughly grasp the basics and quickly move on to more sophisticated DSP techniques. Coverage includes: discrete sequences/systems, DFT, FFT, finite/infinite impulse response filters, quadrature (I/Q) processing, discrete Hilbert transforms, sample rate conversion, signal averaging, and much more. This edition adds extensive new coverage of FIR and IIR filter analysis techniques. The previous multirate processing, and binary number format, material has been significantly updated and expanded. It also provides new coverage of digital differentiators, integrators, and matched filters. Lyons has also doubled the number of DSP tips and tricks as in the previous edition including techniques even seasoned DSP professionals may have overlooked. He has also added end-of-chapter homework problems throughout to support college instruction and professional self-study.
Résumé
Amazon.com’s Top-Selling DSP Book for Seven Straight Years—Now Fully Updated!
Understanding Digital Signal Processing, Third Edition, is quite simply the best resource for engineers and other technical professionals who want to master and apply today’s latest DSP techniques. Richard G. Lyons has updated and expanded his best-selling second edition to reflect the newest technologies, building on the exceptionally readable coverage that made it the favorite of DSP professionals worldwide. He has also added hands-on problems to every chapter, giving students even more of the practical experience they need to succeed.
Comprehensive in scope and clear in approach, this book achieves the perfect balance between theory and practice, keeps math at a tolerable level, and makes DSP exceptionally accessible to beginners without ever oversimplifying it. Readers can thoroughly grasp the basics and quickly move on to more sophisticated techniques.
This edition adds extensive new coverage of FIR and IIR filter analysis techniques, digital differentiators, integrators, and matched filters. Lyons has significantly updated and expanded his discussions of multirate processing techniques, which are crucial to modern wireless and satellite communications. He also presents nearly twice as many DSP Tricks as in the second edition—including techniques even seasoned DSP professionals may have overlooked.
Coverage includes
Contenu
Preface xv
About the Author xxiii
Chapter 1: Discrete Sequences and Systems 1
1.1 Discrete Sequences and their Notation 2
1.2 Signal Amplitude, Magnitude, Power 8
1.3 Signal Processing Operational Symbols 10
1.4 Introduction to Discrete Linear Time-Invariant Systems 12
1.5 Discrete Linear Systems 12
1.6 Time-Invariant Systems 17
1.7 The Commutative Property of Linear Time-Invariant Systems 18
1.8 Analyzing Linear Time-Invariant Systems 19
References 21
Chapter 1 Problems 23
Chapter 2: Periodic Sampling 33
2.1 Aliasing: Signal Ambiguity in the Frequency Domain 33
2.2 Sampling Lowpass Signals 38
2.3 Sampling Bandpass Signals 42
2.4 Practical Aspects of Bandpass Sampling 45
References 49
Chapter 2 Problems 50
Chapter 3: The Discrete Fourier Transform 59
3.1 Understanding the DFT Equation 60
3.2 DFT Symmetry 73
3.3 DFT Linearity 75
3.4 DFT Magnitudes 75
3.5 DFT Frequency Axis 77
3.6 DFT Shifting Theorem 77
3.7 Inverse DFT 80
3.8 DFT Leakage 81
3.9 Windows 89
3.10 DFT Scalloping Loss 96
3.11 DFT Resolution, Zero Padding, and Frequency-Domain Sampling 98
3.12 DFT Processing Gain 102
3.13 The DFT of Rectangular Functions 105
3.14 Interpreting the DFT Using the Discrete-Time Fourier Transform 120
References 124
Chapter 3 Problems 125
Chapter 4: The Fast Fourier Transform 135
4.1 Relationship of the FFT to the DFT 136
4.2 Hints on Using FFTs in Practice 137
4.3 Derivation of the Radix-2 FFT Algorithm 141
4.4 FFT Input/Output Data Index Bit Reversal 149
4.5 Radix-2 FFT Butterfly Structures 151
4.6 Alternate Single-Butterfly Structures 154
References 158
Chapter 4 Problems 160
Chapter 5: Finite Impulse Response Filters 169
5.1 An Introduction to Finite Impulse Response (FIR) Filters 170
5.2 Convolution in FIR Filters 175
5.3 Lowpass FIR Filter Design 186
5.4 Bandpass FIR Filter Design 201
5.5 Highpass FIR Filter Design 203
5.6 Parks-McClellan Exchange FIR Filter Design Method 204
5.7 Half-band FIR Filters 207
5.8 Phase Response of FIR Filters 209
5.9 A Generic Description of Discrete Convolution 214
5.10 Analyzing FIR Filters 226
References 235
Chapter 5 Problems 238
Chapter 6: Infinite Impulse Response Filters 253
6.1 An Introduction to Infinite Impulse Response Filters 254
6.2 The Laplace Transform 257
6.3 The z-Transform 270
6.4 Using the z-Transform to Analyze IIR Filters 274
6.5 Using Poles and Z…