Prix bas
CHF156.00
Impression sur demande - l'exemplaire sera recherché pour vous.
This book covers one of the most important aspects of fuel cell research and development from a number of different viewpoints, with various aspects of membrane electrode assemblies covered in detail, as well as durability and degradation issues.
This book covers a significant number of R&D projects, performed mostly after 2000, devoted to the understanding and prevention of performance degradation processes in polymer electrolyte fuel cells (PEFCs). The extent and severity of performance degradation processes in PEFCs were recognized rather gradually. Indeed, the recognition overlapped with a significant number of industrial dem- strations of fuel cell powered vehicles, which would suggest a degree of technology maturity beyond the resaolution of fundamental failure mechanisms. An intriguing question, therefore, is why has there been this apparent delay in addressing fun- mental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stacks which were not performed under fully relevant conditions, parti- larly such tests which did not include multiple onoff and/or high powerlow power cycles typical for transportation and mobile power applications of PEFCs. Long-term testing of PEFCs reported in the early 1990s by both Los Alamos National Laboratory and Ballard Power was performed under conditions of c- stant cell voltage, typically near the maximum power point of the PEFC.
No competition exists at this point in time There is an intense interest in fuel cell durability with continued interest in fuel cells in general Addresses the need to bring durability issues from the commercial sector to the academic sector The editors are distinguished in the field and therefore have deep insights to share from their experienced careers in industry Includes supplementary material: sn.pub/extras
Texte du rabat
A major part of the competitiveness gap of polymer electrolyte fuel cell (PEFC) technology in automotive and stationary co-generation applications is due lack of durability. This book analyzes the relevant degradation processes in PEFC on the level of components, cells and stacks, and applications. Prominent authors from the PEFC field describe and analyze in 23 chapters the relevant degradation mechanisms and mitigation strategies.
Résumé
This book covers a significant number of R&D projects, performed mostly after 2000, devoted to the understanding and prevention of performance degradation processes in polymer electrolyte fuel cells (PEFCs). The extent and severity of performance degradation processes in PEFCs were recognized rather gradually. Indeed, the recognition overlapped with a significant number of industrial dem- strations of fuel cell powered vehicles, which would suggest a degree of technology maturity beyond the resaolution of fundamental failure mechanisms. An intriguing question, therefore, is why has there been this apparent delay in addressing fun- mental performance stability requirements. The apparent answer is that testing of the power system under fully realistic operation conditions was one prerequisite for revealing the nature and extent of some key modes of PEFC stack failure. Such modes of failure were not exposed to a similar degree, or not at all, in earlier tests of PEFC stacks which were not performed under fully relevant conditions, parti- larly such tests which did not include multiple onoff and/or high powerlow power cycles typical for transportation and mobile power applications of PEFCs. Long-term testing of PEFCs reported in the early 1990s by both Los Alamos National Laboratory and Ballard Power was performed under conditions of c- stant cell voltage, typically near the maximum power point of the PEFC.
Contenu
Stack Components.- Dissolution and Stabilization of Platinum in Oxygen Cathodes.- Carbon-Support Requirements for Highly Durable Fuel Cell Operation.- Chemical Degradation of Perfluorinated Sulfonic Acid Membranes.- Chemical Degradation: Correlations Between Electrolyzer and Fuel Cell Findings.- Improvement of Membrane and Membrane Electrode Assembly Durability.- Durability of Radiation-Grafted Fuel Cell Membranes.- Durability Aspects of Gas-Diffusion and Microporous Layers.- High-Temperature Polymer Electrolyte Fuel Cells: Durability Insights.- Direct Methanol Fuel Cell Durability.- Influence of Metallic Bipolar Plates on the Durability of Polymer Electrolyte Fuel Cells.- Durability of Graphite Composite Bipolar Plates.- Gaskets: Important Durability Issues.- Cells and Stack Operation.- Air Impurities.- Impurity Effects on Electrode Reactions in Fuel Cells.- Performance and Durability of a Polymer Electrolyte Fuel Cell Operating with Reformate: Effects of CO, CO2, and Other Trace Impurities.- Subfreezing Phenomena in Polymer Electrolyte Fuel Cells.- Application of Accelerated Testing and Statistical Lifetime Modeling to Membrane Electrode Assembly Development.- Operating Requirements for Durable Polymer-Electrolyte Fuel Cell Stacks.- Design Requirements for Bipolar Plates and Stack Hardware for Durable Operation.- Heterogeneous Cell Ageing in Polymer Electrolyte Fuel Cell Stacks.- System Perspectives.- Degradation Factors of Polymer Electrolyte Fuel Cells in Residential Cogeneration Systems.- Fuel Cell Stack Durability for Vehicle Application.- R&D Status.- Durability Targets for Stationary and Automotive Applications in Japan.