Prix bas
CHF82.40
Impression sur demande - l'exemplaire sera recherché pour vous.
This book provides the elements of probability and stochastic processes of direct interest to the applied sciences where probabilistic models play an important role, most notably in the information and communications sciences, computer sciences, operations research, and electrical engineering, but also in fields like epidemiology, biology, ecology, physics, and the earth sciences.
The theoretical tools are presented gradually, not deterring the readers with a wall of technicalities before they have the opportunity to understand their relevance in simple situations. In particular, the use of the so-called modern integration theory (the Lebesgue integral) is postponed until the fifth chapter, where it is reviewed in sufficient detail for a rigorous treatment of the topics of interest in the various domains of application listed above.
The treatment, while mathematical, maintains a balance between depth and accessibility that is suitable for theefficient manipulation, based on solid theoretical foundations, of the four most important and ubiquitous categories of probabilistic models:
Provides a clear and intuitive introduction to the range of probabilistic tools used in the applied sciences Covers diverse topics such as random graphs, rejection sampling, and Bayesian hypothesis testing Includes lots of exercises for practice and homework
Auteur
Pierre Brémaud graduated from the École Polytechnique and obtained his Doctorate in Mathematics from the University of Paris VI and his PhD from the department of Electrical Engineering and Computer Science at the University of California, Berkeley. He is a major contributor to the theory of stochastic processes and their applications, and has authored or co-authored several reference books and textbooks.
Contenu
Preface.- Basic Notions.- Discrete Random Variables.- Continuous Random Vectors.- The Lebesgue Integral.- From Integral to Expectation.- Convergence Almost Sure.- Convergence in Distribution.- Martingales.- Markov Chains.- Poisson Processes.- Brownian Motion.- Wide-sense Stationary Processes.- A Review of Hilbert Spaces.- Bibliography.- Index.