Prix bas
CHF81.60
Impression sur demande - l'exemplaire sera recherché pour vous.
"There has long been a need for introductory text on differential topology, and the reviewer must be one of many who have contemplated writing such a book. The appearance of a book by such an appropriate author as Morris Hirsch promises to fill this gap. The philosophy, well expressed in the introduction, emphasizing the origins and applications of smooth manifolds, augurs well, as does the list of contents which proceeds through the commonly agreed key ideas of the subject. After the two introductory chapters, we are taken reasonably thoroughly through transversality, vector bundles and tubular neighbourhoods, degrees and the Euler characteristic, Morse theory, cobordism and isotopy; and the book closes by applying these basic ideas to classify compact surfaces up to diffeomorphism (unfortunately there is a slip in the statement of the final result: one needs the surfaces to be both orientable or both nonorientable).
It is an attractive book to read, through the absence of presision will irritate some; and in some ways goes further than one might expect (a nice proof of Sard's theorem, and non-trivial discussion of the real analytic case)." C.T.C. Wall 1 "...a most readable book. The author has taken considerable trouble with the exposition and has improved on previous accounts in many ways. There are some good diagrams and plenty of exercises ..." Bulletin of the American Mathematical Society 2
This book presents some of the basic topological ideas used in studying differentiable manifolds and maps. Mathematical prerequisites have been kept to a minimum; the standard course in analysis and general topology is adequate preparation. An appendix briefly summarizes some of the back ground material. In order to emphasize the geometrical and intuitive aspects of differen tial topology, I have avoided the use of algebraic topology, except in a few isolated places that can easily be skipped. For the same reason I make no use of differential forms or tensors. In my view, advanced algebraic techniques like homology theory are better understood after one has seen several examples of how the raw material of geometry and analysis is distilled down to numerical invariants, such as those developed in this book: the degree of a map, the Euler number of a vector bundle, the genus of a surface, the cobordism class of a manifold, and so forth. With these as motivating examples, the use of homology and homotopy theory in topology should seem quite natural. There are hundreds of exercises, ranging in difficulty from the routine to the unsolved. While these provide examples and further developments of the theory, they are only rarely relied on in the proofs of theorems.
Résumé
M.W. Hirsch
Differential Topology
"A very valuable book. In little over 200 pages, it presents a well-organized and surprisingly comprehensive treatment of most of the basic material in differential topology, as far as is accessible without the methods of algebraic topology. Newly introduced concepts are usually well motivated, and often the historical development of an idea is described. There is an abundance of exercises, which supply many beautiful examples and much interesting additional information, and help the reader to become thoroughly familiar with the material of the main text. "-MATHEMATICAL REVIEWS
Contenu
1 : Manifolds and Maps.- 0. Submanifolds of ?n+k.- 1. Differential Structures.- 2. Differentiable Maps and the Tangent Bundle.- 3. Embeddings and Immersions.- 4. Manifolds with Boundary.- 5. A Convention.- 2 : Function Spaces.- 1. The Weak and Strong Topologies on Cr(M, N).- 2. Approximations.- 3. Approximations on ?-Manifolds and Manifold Pairs.- 4. Jets and the Baire Property.- 5. Analytic Approximations.- 3 : Transversality.- 1. The Morse-Sard Theorem.- 2. Transversality.- 4 : Vector Bundles and Tubular Neighborhoods.- 1. Vector Bundles.- 2. Constructions with Vector Bundles.- 3. The Classification of Vector Bundles.- 4. Oriented Vector Bundles.- 5. Tubular Neighborhoods.- 6. Collars and Tubular Neighborhoods of Neat Submanifolds.- 7. Analytic Differential Structures.- 5 : Degrees, Intersection Numbers, and the Euler Characteristic.- 1. Degrees of Maps.- 2. Intersection Numbers and the Euler Characteristic.- 3. Historical Remarks.- 6 : Morse Theory.- 1. Morse Functions.- 2. Differential Equations and Regular Level Surfaces.- 3. Passing Critical Levels and Attaching Cells.- 4. CW-Complexes.- 7 : Cobordism.- 1. Cobordism and Transversality.- 2. The Thorn Homomorphism.- 8 : Isotopy.- 1. Extending Isotopies.- 2. Gluing Manifolds Together.- 3. Isotopies of Disks.- 9 : Surfaces.- 1. Models of Surfaces.- 2. Characterization of the Disk.- 3. The Classification of Compact Surfaces.