Prix bas
CHF180.80
Impression sur demande - l'exemplaire sera recherché pour vous.
Highlights most recent developments in methane biocatalysisPresents metabolic engineering strategies in methanotrophic bacteriaDiscusses pathbreaking approaches towards sustainable energy generation
Highlights most recent developments in methane biocatalysis Presents metabolic engineering strategies in methanotrophic bacteria Discusses pathbreaking approaches towards sustainable energy generation
Auteur
Dr. Kalyuzhnaya graduated from the Dnepropetrovsk National University, Department of Microbiology, Ukraine in 1994. She earned her PhD in Microbiology in 2000 from the Russian Academy of Sciences, Center for Microbiology and Biotechnology & Institute of Biochemistry and Physiology of Microorganisms. Since 2001 Dr. Kalyuzhnaya has lived and worked in United States where she is currently a faculty member in the Department of Biology and Viral Information Institute at San Diego State University . Her research interests are focused on improving our knowledge of the methane cycle in nature and developing sustainable approaches for methane mitigation from human-made systems and agriculture. Her unique expertise includes microbial genomics and physiology, systems biology, and metabolic engineering. Her team developed the first flux balance model of methane-utilization and constructed a set of methanotropic traits and genetic tools for efficient engineering of methane metabolism. Currently Dr. Kalyuzhnaya's research efforts include: 1) the characterization of key elements (enzymes, regulators) essential for microbial methane utilization and elucidation of the evolution and functional plasticity of related metabolic functions; 2) the development of novel sustainable approaches for methane capturing and conversion into feedstocks, chemicals, and fuels; and 3) the understanding of key mechanisms supporting microbe-microbe or microbe-plant interactions in arid and semiarid ecosystems. She is an author of more than 100 scientific publications, book chapters, and numerous patents related to microbial methane conversion.
Prof. Xin-Hui XING received his B.S. from South China University of Technology in 1985, and Ph.D. from Tokyo Institute of Technology in 1992. He had been Assistant Professor at Tokyo Institute of Technology from 1992 to 1998, and Associate Professor at Yokohama National University from 1998 to2001. He wasselected as a full professor by the 100-Telent Scholar Program of Tsinghua University in 2000 and joined department of Chemical Engineering since then. He was appointed as the director of Institute of Biochemical Engineering in 2002. Currently he is the vice chairman of Department of Chemical Engineering. His research field covers biochemical engineering, C1 biological and bioprocess engineering, enzyme engineering, evolution technology and instrumentation, environmental biotechnology and bioenergy. He has published more than 240 scientific papers, 16 book chapters, and 80 filed patents.
Contenu
Methanotrophy: an evolving field.- Diversity of methanotrophic bacteria.- Methanotrophic Verrucomicrobia: diversity and metabolic potential.- C1 and N cycles.- Metals in methanotrophy.- Pyrophosphate metabolism in C1-utilization.- Systems biology and metabolic modeling of C1-metabolism.- Metabolic Engineering in methanotrophic bacteria.- Synthetic methylotrophy.- Engineering soluble methane monooxygenase for biocatalysis.- Methanol biosynthesis using methanotrophs.- Reversing methanogenesis.- From methanol to value added chemicals via metabolic engineering of methylotrophic cell factories.- Potential for landfill methane utilization.- Mixed methanotrophic consortium for promising applications in environmental bioengineering and biocatalysis.- TEA/LCA of methane utilization.- Cracking economies of scale: biomanufacturing on methane-rich feedstock.- Methanotrophy goes commercial: challenges and opportunities.- Methanotrophy goes commercial: challenges and opportunities-2.