Prix bas
CHF156.00
Impression sur demande - l'exemplaire sera recherché pour vous.
This volume covers the measurement of membrane potential signals from dendrites and axons of individual neurons, measurements of the activity of many neurons with single cell resolution, monitoring of population signals from the nervous system.
The book is structured in five sections, each containing several chapters written by experts and major contributors to particular topics. The volume starts with a historical perspective and fundamental principles of membrane potential imaging and continues to cover the measurement of membrane potential signals from dendrites and axons of individual neurons, measurements of the activity of many neurons with single cell resolution, monitoring of population signals from the nervous system, and concludes with the overview of new approaches to voltage-imaging. The book is targeted at all scientists interested in this mature but also rapidly expanding imaging approach.
Outlines methods and procedures in imaging cellular activity in neurons using voltage-sensitive dyes 2. Provides all the necessary material in the form of a practical manual 3. Written by accomplished leaders in the area of voltage-imaging Includes supplementary material: sn.pub/extras
Auteur
Dejan Zecevic (b. Belgrade 1948) is a Research Scientist at the Department of Cellular and Molecular Physiology, Yale University School of Medicine. He received the PhD in Biophysics from The University of Belgrade, Serbia and was trained in the laboratory of Dr Lawrence Cohen who initiated the field of voltage-sensitive dye recording. Dejan is the pioneer of intracellular voltage-sensitive dye imaging technique, a unique and a cutting edge technology for monitoring the membrane potential fluctuation in dendritic spines and fine branches. Marco (b. Milan 1970) is first class INSERM researcher (CR1) working at the Grenoble Institute of Neuroscience. He graduated in physics at the University of Genoa and received his PhD in biophysics from the International School for Advanced Studies in Trieste. He worked at the National Institute for Medical Research in London, at Yale University and at the University of Basel. Marco is expert on several optical techniques applied to neurophysiology. Marco and Dejan collaborated for a number of years using voltage-imaging and calcium imaging approaches to study mechanisms underlying synaptic plasticity.
Texte du rabat
Membrane Potential Imaging in the Nervous System: Methods and Applications describes optical techniques to monitor neuronal membrane potential signals. The knowledge upon which voltage-imaging technique is based was generated over several decades and the aim of this book is to provide a single comprehensive source of information on different types of voltage-imaging techniques, including overviews, methodological details, examples of experimental measurements, and future developments. The book is structured in five sections, each containing several chapters written by experts and major contributors to particular topics. The volume starts with a historical perspective and fundamental principles of membrane potential imaging and continues to cover the measurement of membrane potential signals from dendrites and axons of individual neurons, measurements of the activity of many neurons with single cell resolution, monitoring of population signals from the nervous system, and concludes with the overview of new approaches to voltage-imaging. Membrane Potential Imaging in the Nervous System is targeted at all scientists interested in this mature but also rapidly expanding imaging approach.
Contenu
Historical overview and general methods of membrane potential imaging.- Design and use of organic voltage sensitive dyes.- Imaging submillisecond membrane potential changes from individual regions of single axons, dendrites and spines.- Combined voltage and calcium imaging and signal calibration.- Use of fast-responding voltage-sensitive dyes for large-scale recording of neuronal spiking activity with single-cell resolution.- Monitoring integrated activity of individual neurons using FRET-based voltage-sensitive dyes.- Monitoring population membrane potential signals from neocortex.- Monitoring population membrane potential signals during functional development of neuronal circuits in vertebrate embryos.- Imaging the dynamics of mammalian neocortical population activity in-vivo.- Imaging the dynamics of neocortical population activity in behaving and freely moving mammals.- Monitoring membrane voltage using two-photon excitation of fluorescent voltage-sensitive dyes.- Random-access multiphoton microscopy for fast three-dimensional Imaging.- Second harmonic imaging of membrane potential.- Genetically encoded protein sensors of membrane potential