Prix bas
CHF170.40
Impression sur demande - l'exemplaire sera recherché pour vous.
Presents recent advances in understanding membrane structure and functions
Includes classic and cutting-edge techniques for exploring and analyzing membrane composition
Describes essential protocols for the study of membranes
Ideal for experienced researchers in the field and newcomers alike
Presents recent advances in understanding membrane structure and functions Includes classic and cutting-edge techniques for exploring and analyzing membrane composition Describes essential protocols for the study of membranes Ideal for experienced researchers in the field and newcomers alike Includes supplementary material: sn.pub/extras
Auteur
Hongda Wang received his bachelor's degree from the Department of Molecular Biology, Jilin University in 1995 and his doctorate from the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, in 2000. He worked as a postdoctoral research associate at the Max Planck Institute of Molecular Physiology and Arizona State University from 2001 to 2007. Since 2008, he has been working as a PI at the Changchun Institute of Applied Chemistry (under the CAS 100 Talent Program). Prof. Wang is the winner of The National Science Fund for Distinguished Young Scholars. His primary research interest is in the structure and function of cell membranes using multiple single-molecule techniques, particularly atomic force microscopy, molecular recognition imaging and super-resolution fluorescence microscopy.
Guohui Li received his bachelor's degree from the Department of Physics, Liaoning Normal University in 1994 and his doctorate from Dalian Institute of Chemical Physics(DICP), Chinese Academy of Sciences, in 2000. He worked as a postdoctoral research associate at the University of New Mexico, University of Wisconsin Madison, and Harvard Medical School from 2000 to 2006, and served as a research scientist at Biogen Idec Inc. from 2006 to 2009. Since 2009, he has been working as a PI at DICP. His main research interest is in studying the biophysical properties and biochemical functionality of soluble and membrane-associated macromolecules through computational simulation techniques; the developments in and applications of force fields with high precision and efficiency; and the combination of new force fields and enhanced sampling techniques. The polarizable lipid models developed by his lab have been used to study the structure, dynamics of membrane bilayers, and microscopic mechanism of membrane proteins.
Contenu
Composition and Function of Cell Membranes.- History and Traditional Techniques of Studying the Structure of Cell Membranes.- Imaging membranes by High resolution Atomic Force Microscopy.- Detection of Membrane Mechanical Properties and Endocytosis by Single Molecule Force Spectroscopy.- Super-resolution Imaging of Membrane Heterogeneity.- Analysis and Applications of Single Molecule Fluorescence in Live Cell Membranes.- Lipid Cubic Phase for Membrane Protein X-ray Crystallography.- Electron Microscopic Analysis of the Plasma Membrane and Cell Surface Molecules.- Solid-state Nuclear Magnetic Resonance Spectroscopy of Membrane Proteins.- Mass Spectrometry of Membrane Proteins.- Infrared Spectroscopy for Studying Plasma Membranes.- Computer simulations to explore membrane organization and transport.- Other Modern Methods for Studying Biomembranes.