Prix bas
CHF168.80
Habituellement expédié sous 4 à 6 jours ouvrés.
Written by one of the pioneers, this book presents enzyme engineering and its applications at its best. Beside established topics like enzyme activity and selectivity, emerging fields like machine learning and AI are presented, too.
Auteur
Manfred T. Reetz is a former Director and presently Emeritus Professor at the Max-Planck-Institut für Kohlenforschung in Mülheim/Germany. He is a synthetic organic chemist who pioneered the concept of directed evolution of stereo- and regioselective enzymes as a prolific source of catalysts in organic chemistry and biotechnology. Reetz has received numerous German and international awards and prizes, and is member of the German National Academy Leopoldina, Academy of the German state of NRW, Royal Dutch Academy of Sciences, European Academy of Sciences, and Distinguished Scientist of the Chinese Academy of Sciences (China).
Zhoutong Sun obtained his Ph.D in microbiology at Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences in 2012, then he moved to Nanyang Technological University in Singapore as a research fellow. One year later, he moved to the MPI für Kohlenforschung and Marburg University for a postdoc with Prof. Manfred T. Reetz. In 2016, he became a full professor at Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences. His research interests are in the discovery, design and engineering of biocatalysts as well as cascade reactions design and metabolic engineering.
Ge Qu received his Ph.D in Bioinformatics from Adam Mickiewicz University in Poland in 2015. Currently, he is working as an associated professor in the Reetz Laboratory at Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences. His major research interests are the discovery and structure-based engineering of enzymes that have potential as industrial biocatalysts.
Texte du rabat
An authoritative and up-to-date discussion of enzyme engineering and its applications In Enzyme Engineering: Selective Catalysts for Applications in Biotechnology, Organic Chemistry, and Life Science, a team of distinguished researchers deliver a robust treatment of enzyme engineering and its applications in various fields such as biotechnology, life science, and synthesis. The book begins with an introduction to different protein engineering techniques, covers topics like gene mutagenesis methods for directed evolution and rational enzyme design. It includes industrial case studies of enzyme engineering with a focus on selectivity and activity. The authors also discuss new and innovative areas in the field, involving machine learning and artificial intelligence. It offers several insightful perspectives on the future of this work. Readers will also find:
Contenu
Introduction to Directed Evolution and Rational Design as Protein Engineering Techniques
-Methods and Aims of Directed Enzyme Evolution
-Short History of Directed Enzyme Evolution
-Methods and Aims of Rational Design of Enzymes
Screening and Selection Techniques
Gene Mutagenesis Methods
Guidelines for Applying Gene Mutagenesis Methods in Organic Chemistry, Pharmaceutical Applications and Biotechnology
Case Studies of Protein Engineering of Activity and Selectivity
-Epoxide Hydrolase
-Transaminase as an Industrial Example with Pharmaceutical Application
-Geranylgeranyl Diphosphate Synthase for Efficient Carotenoid Production
-Cytochrome P450 Monooxygenases for Synthesis of Hydroxylation of Steroids Needed in the Preparation of Pharmaceuticals
-Lipase for Stereocomplementary Production of Organic Compounds with Two Chirality Centers
-Further Examples Using Other Enzyme Types
Protein Engineering of Enzyme Robustness
-Examples of Relevance to Organic and Pharmaceutical Applications
-Examples of Relevance to Biotechnology
Artificial Metallo-Enzymes for Promiscuous Transformations Using Known Organic Reaction Types as a Guide
Learning Lessons from Protein Engineering
Perspectives for Future Work
-In Extending Applications in Organic and Pharmaceutical Chemistry
-In Extending Biotechnological Contributions to Ecology