Prix bas
CHF73.60
Impression sur demande - l'exemplaire sera recherché pour vous.
Iusethetermlogicalandrelationallearning torefertothesub?eldofarti?cial intelligence,machinelearninganddataminingthatisconcernedwithlearning in expressive logical or relational representations. It is the union of inductive logic programming, (statistical) relational learning and multi-relational data mining, which all have contributed techniques for learning from data in re- tional form. Even though some early contributions to logical and relational learning are about forty years old now, it was only with the advent of - ductive logic programming in the early 1990s that the ?eld became popular. Whereas initial work was often concerned with logical (or logic programming) issues,thefocushasrapidlychangedtothediscoveryofnewandinterpretable knowledge from structured data, often in the form of rules, and soon imp- tant successes in applications in domains such as bio- and chemo-informatics and computational linguistics were realized. Today, the challenges and opp- tunities of dealing with structured data and knowledge have been taken up by the arti?cial intelligence community at large and form the motivation for a lot of ongoing research. Indeed, graph, network and multi-relational data mining are now popular themes in data mining, and statistical relational learning is receiving a lot of attention in the machine learning and uncertainty in art- cial intelligence communities. In addition, the range of tasks for which logical and relational techniques have been developed now covers almost all machine learning and data mining tasks.
First textbook on multirelational data mining and inductive logic programming Includes supplementary material: sn.pub/extras
Auteur
Luc De Raedt is currently a full professor (C4) of computer science at the Albert-Ludwigs-University Freiburg and head of the Machine Learning lab. Before coming to Freiburg in 1999, he held positions as (parttime) senior lecturer, lecturer and assistant at the Department of Computer Science of the Katholieke Universiteit Leuven (Belgium) and as post-doc of the Fund for Scientific Research, Flanders. He obtained his undergraduate degree as well as his Ph.D. in computer science from the Katholieke Universiteit Leuven (Belgium) in 1986 and 1991. His Ph.D. thesis was subsequently published by Academic Press. De Raedt has a rich experience in European Union research projects.'He (co-)coordinated the successful ESPRIT III and IV Inductive Logic Programming (1 and 2) projects, coordinated the IST assessment project APrIL, and the Marie Curie Training Site DAISY (Foundations of Intelligent Systems). He is at present also involved in the European IST-FET project cInQ belonging to FP5. De Raedt has (co)-organised several international workshops and conferences.
Texte du rabat
This textbook covers logical and relational learning in depth, and hence provides an introduction to inductive logic programming (ILP), multirelational data mining (MRDM) and (statistical) relational learning (SRL). These subfields of data mining and machine learning are concerned with the analysis of complex and structured data sets that arise in numerous applications, such as bio- and chemoinformatics, network analysis, Web mining, natural language processing, within the rich representations offered by relational databases and computational logic.
The author introduces the machine learning and representational foundations of the field and explains some important techniques in detail by using some of the classic case studies centered around well-known logical and relational systems.
The book is suitable for use in graduate courses and should be of interest to graduate students and researchers in computer science, databases and artificial intelligence, as well as practitioners of data mining and machine learning. It contains numerous figures and exercises, and slides are available for many chapters.
Contenu
An Introduction to Logic.- An Introduction to Learning and Search.- Representations for Mining and Learning.- Generality and Logical Entailment.- The Upgrading Story.- Inducing Theories.- Probabilistic Logic Learning.- Kernels and Distances for Structured Data.- Computational Aspects of Logical and Relational Learning.- Lessons Learned.
Prix bas