Prix bas
CHF189.60
Impression sur demande - l'exemplaire sera recherché pour vous.
Inelastic Analysis of Solids and Structures presents in a unified manner the physical and theoretical background of inelastic material models and computational methods, and illustrates the behavior of the models in typical engineering conditions. The book describes experimental observations and principles of mechanics, and efficient computational algorithms for stress calculations as typically performed in finite element analysis. The theoretical background is given to an extent necessary to describe the commonly employed material models in metal isotropic and orthotropic plasticity, thermoplasticity and viscoplasticity, and the plasticity of geological materials. The computational algorithms are developed in a unified manner with some detailed derivations of the algorithmic relations. Many solved examples are presented, which are designed to give insight into the material behavior in various engineering conditions, and to demonstrate the application of the computational algorithms.
Gives an overview of state-of-the-art methods in computational inelasticity Includes supplementary material: sn.pub/extras
Texte du rabat
This book presents computational procedures for the stress integration of inelastic constitutive relations within the incremental-iterative finite element analysis and general strain-driven problems of solids and structures. The book gives the physical and theoretical foundations of inelastic material models commonly used in engineering practice, and focuses on the formulation of robust, efficient and accurate computational algorithms for the response solution of 2-D and 3-D solids, shells, and beam and pipe structures. The algorithms are based on the concept that the implicit stress integration can frequently be reduced to the solution of a single nonlinear equation (an equation for a governing parameter). Many solved engineering examples illustrate the effectiveness of the computational procedures and elucidate inelastic material behavior. The computational schemes can be used for further developments of stress integration algorithms in topics of inelastic material modeling not included in the book.
Résumé
Inelastic Analysis of Solids and Structures presents in a unified manner the physical and theoretical background of inelastic material models and computational methods, and illustrates the behavior of the models in typical engineering conditions. The book describes experimental observations and principles of mechanics, and efficient computational algorithms for stress calculations as typically performed in finite element analysis. The theoretical background is given to an extent necessary to describe the commonly employed material models in metal isotropic and orthotropic plasticity, thermoplasticity and viscoplasticity, and the plasticity of geological materials. The computational algorithms are developed in a unified manner with some detailed derivations of the algorithmic relations. Many solved examples are presented, which are designed to give insight into the material behavior in various engineering conditions, and to demonstrate the application of the computational algorithms.
Contenu
An Introduction to the Incremental-Iterative Solution of Nonlinear Structural Problems.- Fundamental Notions of Metal Plasticity.- A General Procedure for Stress Integration and Applications in Metal Plasticity.- Creep and Viscoplasticity.- Plasticity of Geological Materials.- Large Strain Elastic-Plastic Analysis.