Prix bas
CHF66.55
Habituellement expédié sous 2 à 4 jours ouvrés.
More than 162,000 networking professionals have relied on W. Richard Stevens' classic TCP/IP Illustrated, Volume 1 to gain the detailed understanding of TCP/IP they need to be effective. Now, the world's leading TCP/IP best-seller has been thoroughly updated to reflect a new generation of TCP/IP-based networking technologies. TCP/IP Illustrated, Volume 1, Second Edition doesn't just describe protocols: it enables readers to observe how these protocols operate under different conditions, using publicly available tools, and explains why key design decisions were made. The result: readers gain a deep understanding of how TCP/IP protocols function, and why they function that way. Now thoroughly updated by long-time networking expert Kevin Fall, this brand-new second edition's extensive new coverage includes: " Remote procedure call " Identity management (access control / authentication) " Network and transport layer security (authentication / privacy) " File access protocols, including NFS and SMB/CIFS " Host initialization and DHCP " NAT and firewalls " E-mail " Web and web services " Wireless and wireless security " New tools, including Ethereal, nmap and netcat
For an engineer determined to refine and secure Internet operation or to explore alternative solutions to persistent problems, the insights provided by this book will be invaluable.
Vint Cerf, Internet pioneer
*TCP/IP Illustrated, Volume 1, Second Edition,* is a detailed and visual guide to today's TCP/IP protocol suite. Fully updated for the newest innovations, it demonstrates each protocol in action through realistic examples from modern Linux, Windows, and Mac OS environments. There's no better way to discover why TCP/IP works as it does, how it reacts to common conditions, and how to apply it in your own applications and networks.
Building on the late W. Richard Stevens' classic first edition, author Kevin R. Fall adds his cutting-edge experience as a leader in TCP/IP protocol research, updating the book to fully reflect the latest protocols and best practices. He first introduces TCP/IP's core goals and architectural concepts, showing how they can robustly connect diverse networks and support multiple services running concurrently. Next, he carefully explains Internet addressing in both IPv4 and IPv6 networks. Then, he walks through TCP/IP's structure and function from the bottom up: from link layer protocolssuch as Ethernet and Wi-Fithrough network, transport, and application layers.
Fall thoroughly introduces ARP, DHCP, NAT, firewalls, ICMPv4/ICMPv6, broadcasting, multicasting, UDP, DNS, and much more. He offers extensive coverage of reliable transport and TCP, including connection management, timeout, retransmission, interactive data flow, and congestion control. Finally, he introduces the basics of security and cryptography, and illuminates the crucial modern protocols for protecting security and privacy, including EAP, IPsec, TLS, DNSSEC, and DKIM. Whatever your TCP/IP experience, this book will help you gain a deeper, more intuitive understanding of the entire protocol suite so you can build better applications and run more reliable, efficient networks.
Auteur
Kevin R. Fall, Ph.D., has worked with TCP/IP for more than twenty-five years, and served on the Internet Architecture Board. He co-chairs the Internet Research Task Force’s Delay Tolerant Networking Research Group (DTNRG), which explores networking in extreme and performance-challenged environments. He is an IEEE Fellow.
W. Richard Stevens, Ph.D. (1951-1999), was the pioneering author who taught a generation of network professionals the TCP/IP skills they’ve used to make the Internet central to everyday life. His best-selling books included all three volumes of TCP/IP Illustrated (Addison-Wesley), as well as UNIX Network Programming (Prentice Hall).
Contenu
Foreword xxv
Preface to the Second Edition xxvii
Adapted Preface to the First Edition xxxiii
Chapter 1: Introduction 1 1.1 Architectural Principles 2 1.2 Design and Implementation 8
1.3 The Architecture and Protocols of the TCP/IP Suite 13
1.4 Internets, Intranets, and Extranets 19
1.5 Designing Applications 20
1.6 Standardization Process 22
1.7 Implementations and Software Distributions 24
1.8 Attacks Involving the Internet Architecture 25
1.9 Summary 26
1.10 References 28
Chapter 2: The Internet Address Architecture 31 2.1 Introduction 31 2.2 Expressing IP Addresses 32
2.3 Basic IP Address Structure 34
2.4 CIDR and Aggregation 46
2.5 Special-Use Addresses 50
2.6 Allocation 62
2.7 Unicast Address Assignment 65
2.8 Attacks Involving IP Addresses 70
2.9 Summary 71
2.10 References 72
Chapter 3: Link Layer 79 3.1 Introduction 79 3.2 Ethernet and the IEEE 802 LAN/MAN Standards 80
3.3 Full Duplex, Power Save, Autonegotiation, and 802.1X Flow Control 94
3.4 Bridges and Switches 98
3.5 Wireless LANsIEEE 802.11(Wi-Fi) 111
3.6 Point-to-Point Protocol (PPP) 130
3.7 Loopback 145
3.8 MTU and Path MTU 148
3.9 Tunneling Basics 149
3.10 Attacks on the Link Layer 154
3.11 Summary 156
3.12 References 157
Chapter 4: ARP: Address Resolution Protocol 165 4.1 Introduction 165 4.2 An Example 166
4.3 ARP Cache 169
4.4 ARP Frame Format 170
4.5 ARP Examples 171
4.6 ARP Cache Timeout 174
4.7 Proxy ARP 174
4.8 Gratuitous ARP and Address Conflict Detection (ACD) 175
4.9 The arp Command 177
4.10 Using ARP to Set an Embedded Device's IPv4 Address 178
4.11 Attacks Involving ARP 178
4.12 Summary 179
4.13 References 179
Chapter 5: The Internet Protocol (IP) 181 5.1 Introduction 181 5.2 IPv4 and IPv6 Headers 183
5.3 IPv6 Extension Headers 194
5.4 IP Forwarding 208
5.5 Mobile IP 215
5.6 Host Processing of IP Datagrams 220
5.7 Attacks Involving IP 226
5.8 Summary 226
5.9 References 228
Chapter 6: System Configuration: DHCP and Autoconfiguration 233 6.1 Introduction 233 6.2 Dynamic Host Configuration Protocol (DHCP) 234
6.3 Stateless Address Autoconfiguration (SLAAC) 276
6.4 DHCP and DNS Interaction 285
6.5 PPP over Ethernet (PPPoE) 286
6.6 Attacks Involving System Configuration 292
6.7 Summary 292
6.8 References 293
Chapter 7: Firewalls and Network Address Translation (NAT) 299 7.1 Introduction 299 7.2 Firewalls 300
7.3 Network Address Translation (NAT) 303
7.4 NAT Traversal 316
7.5 Configuring Packet-Filtering Firewalls and NATs 334
7.6 NAT for IPv4/IPv6 Coexistence and Transition 339
7.7 Attacks Involving Firewalls and NATs 345
7.8 Summary 346
7.9 References 347
Chapter 8: ICMPv4 and ICMPv6: Internet Control Message Protocol 353 8.1 Introduction 353 8.2 ICMP Messages 355
8.3 ICMP Error Messages 361
8.4 ICMP Query/Informational Messages 380
8.5 Neighbor Discovery in IPv6 395
8.6 Translating ICMPv4 and ICMPv6 424
8.7 Attacks Involving ICMP 428
8.8 Summary 430
8.9 References 430
Chapter 9: Broadcasting and Local Multicasting (IGMP and MLD) 435 9.1 Introduction 435 9.2 Broadcasting 436
9.3 Multicasting 441
9.4 The Internet Group Management Protocol (IGMP) and Multicast Listener Discovery Protocol (MLD) 451
9.5 Attacks Involving IGMP and MLD 469
9.6 Summary 470
9.7 References 471
Chapter 10: User Datagram Protocol (UDP) and IP Fragmentation 473 10.1 Introduction 473 10.2 UDP Header 474
10.3 UDP Checksum 475
10.4 Examples 478
10.5 UDP and IPv6 481
10.6 UDP-Lite 487
10.7 IP Fragmentation 488
10.8 Path MTU Discovery with UDP 493
10.9 Interaction between IP Fragmentation and ARP/ND 496
10.10 Maximum UDP Datagram Size 497
10.11 UDP Server Design 498
10.12 Translating UDP/IPv4 and UDP/IPv6 Datagrams 505
10.13 UDP in the Internet 506
10.14 Attacks Involving UDP and IP Fragmentation 507
10.15 Summary 508
10.16 R…