Prix bas
CHF180.80
Impression sur demande - l'exemplaire sera recherché pour vous.
Learning spaces offer a rigorous mathematical foundation for practical systems of educational technology. Describing the underlying theory and applications involved with ancillary assessment procedures, Learning Spaces provides an overview for mathematically oriented readers in education, computer science, and additional disciplines.
Introduces learning space as a special case of knowledge space. Exposes theory and several applications of learning spaces and ancillary assessment procedures. Presents ALEKS as a practical application of learning spaces for an efficient web based learning environment. Includes supplementary material: sn.pub/extras
Auteur
Jean-Paul Doignon is a professor at the mathematics department of the Université Libre de Bruxelles, Belgium. His research covers various aspects of discrete mathematics (graphs, ordered sets, convex polytopes, etc.) and applications to behavioral sciences (preference modeling, choice representation, knowledge assessment, etc.). Jean-Claude Falmagne is emeritus professor of cognitive sciences at the University of California, Irvine. His research interests span various areas, focusing on the application of mathematics to educational technology, psychophysics, choice theory, and the philosophy of science, in particular measurement theory.
Texte du rabat
Learning spaces offer a rigorous mathematical foundation for various practical systems of knowledge assessment. An example is offered by the ALEKS system (Assessment and LEarning in Knowledge Spaces), a software for the assessment of mathematical knowledge. From a mathematical standpoint, learning spaces as well as knowledge spaces (which made the title of the first edition) generalize partially ordered sets. They are investigated both from a combinatorial and a stochastic viewpoint. The results are applied to real and simulated data. The book gives a systematic presentation of research and extends the results to new situations. It is of interest to mathematically oriented readers in education, computer science and combinatorics at research and graduate levels. The text contains numerous examples and exercises, and an extensive bibliography.
Contenu
Overview and Mathematical Glossary.- Knowledge Structures and Learning Spaces.- Knowledge Spaces.- Well-Graded Families.- Surmise Systems.- Skill Maps, Labels and Filters.- Entailments and the Maximal Mesh.- Galois Connections.- Descriptive and Assessment Languages.- Greedoids, Learning Spaces, and Antimatroids.- Learning Spaces and Media.- Probabilistic Knowledge Structures.- Stochastic Learning Paths.- A Continuous Markov Procedure.- A Markov Chain Procedure.- Building a Knowledge Structure.- Building a Learning Space.- Applications.- Open Problems