Prix bas
CHF132.80
Habituellement expédié sous 4 à 9 semaines.
This book focuses on the design, fabrication and applications of carbon-based materials for lithium-sulfur (Li-S) batteries. It provides insights into the localized electrochemical transition of the solid-solid reaction instead of the sulfur-polysulfides-lithium sulfides reaction through the desolvation effect in subnanometer pores; demonstrates that the dissolution/diffusion of polysulfide anions in electrolyte can be greatly reduced by the strong binding of sulfur to the oxygen-containing groups on reduced graphene oxide; manifests that graphene foam can be used as a 3D current collector for high sulfur loading and high sulfur content cathodes; and presents the design of a unique sandwich structure with pure sulfur between two graphene membranes as a very simple but effective approach to the fabrication of Li-S batteries with ultrafast charge/discharge rates and long service lives.
The book offers an invaluable resource for researchers, scientists, and engineers in the field of energy storage, providing essential insights, useful methods, and practical ideas that can be considered for the industrial production and future application of Li-S batteries.
Nominated as an outstanding Ph.D. thesis by the Chinese Academy of Sciences Summarizes recent advances in lithium-sulfur batteries with cathode material design and cell configuration optimization Offers three strategies for improving the performance of Li-S batteries based on physical confinement, chemical binding, and battery configuration design Includes supplementary material: sn.pub/extras
Auteur
Guangmin Zhou received his PhD from the Institute of Metal Research (IMR), Chinese Academy of Sciences in 2014 under the supervision of professors Hui-Ming Cheng and Feng Li, prior to serving for a year as a postdoc with Prof. Manthiram at UT Austin. He is currently a postdoc fellow at Stanford University with Prof. Yi Cui.
His research mainly focuses on advanced carbon-based (porous carbon, graphene, carbon nanotubes) composites for energy storage: their synthesis, electrochemical properties and mechanisms. Zhou has published more than 50 articles in peer-reviewed scientific journals, and first-authored 21 papers published in Nature Communications, Advanced Materials, Advanced Energy Materials, ACS Nano, Energy & Environmental Science, Advanced Functional Materials, Chemistry of Materials, Nano Energy, etc. The paper published in Advanced Materials was selected as one of the Top 100 most influential papers in China in 2014. Additionally, he has authored 1 book chapter (Graphene Science Handbook) and holds 10 patents.
Texte du rabat
This book focuses on the design, fabrication and applications of carbon-based materials for lithium-sulfur (Li-S) batteries. It provides insights into the localized electrochemical transition of the solid-solid reaction instead of the sulfur-polysulfides-lithium sulfides reaction through the desolvation effect in subnanometer pores; demonstrates that the dissolution/diffusion of polysulfide anions in electrolyte can be greatly reduced by the strong binding of sulfur to the oxygen-containing groups on reduced graphene oxide; manifests that graphene foam can be used as a 3D current collector for high sulfur loading and high sulfur content cathodes; and presents the design of a unique sandwich structure with pure sulfur between two graphene membranes as a very simple but effective approach to the fabrication of Li-S batteries with ultrafast charge/discharge rates and long service lives.
The book offers an invaluable resource for researchers, scientists, and engineers in the field of energy storage, providing essential insights, useful methods, and practical ideas that can be considered for the industrial production and future application of Li-S batteries.
Contenu
Introduction.- Revealing Localized Electrochemical Transition of Sulfur in Optimal Sub-nanometer Confinement.- Flexible nanostructured sulfurcarbon nanotube cathode with high rate performance for Li-S batteries.- Fibrous Hybrid of Graphene and Sulfur Nanocrystals for High-Performance Lithium-Sulfur Batteries.- Long-life Li/polysulfide batteries with high sulfur loading enabled by lightweight three-dimensional nitrogen/sulfur-codoped graphene sponge.- GraphenePure-Sulfur Sandwich Structure for Ultrafast, Long-Life LithiumSulfur Batteries.- Research Challenges and Directions.- Summary and Conclusions.