Prix bas
CHF61.90
Habituellement expédié sous 2 à 4 jours ouvrés.
Auteur
François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does AI research, with a focus on abstraction and reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others.
Texte du rabat
Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. You'll learn directly from the creator of Keras, François Chollet, building your understanding through intuitive explanations and practical examples. Updated from the original bestseller with over 50% new content, this second edition includes new chapters, cutting-edge innovations, and coverage of the very latest deep learning tools. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects.
Résumé
"The first edition of Deep Learning with Python is one of the best books on the subject. The second edition made it even better." - Todd Cook
The bestseller revised! Deep Learning with Python, Second Edition is a comprehensive introduction to the field of deep learning using Python and the powerful Keras library. Written by Google AI researcher François Chollet, the creator of Keras, this revised edition has been updated with new chapters, new tools, and cutting-edge techniques drawn from the latest research. You'll build your understanding through practical examples and intuitive explanations that make the complexities of deep learning accessible and understandable.
about the technology
Machine learning has made remarkable progress in recent years. We've gone from near-unusable speech recognition, to near-human accuracy. From machines that couldn't beat a serious Go player, to defeating a world champion. Medical imaging diagnostics, weather forecasting, and natural language question answering have suddenly become tractable problems. Behind this progress is deep learninga combination of engineering advances, best practices, and theory that enables a wealth of previously impossible smart applications across every industry sector
about the book
Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. You'll learn directly from the creator of Keras, François Chollet, building your understanding through intuitive explanations and practical examples. Updated from the original bestseller with over 50% new content, this second edition includes new chapters, cutting-edge innovations, and coverage of the very latest deep learning tools. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects.
what's inside
Deep learning from first principles
Image-classification, imagine segmentation, and object detection
Deep learning for natural language processing
Timeseries forecasting
Neural style transfer, text generation, and image generation
about the reader
Readers need intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required.
about the author
François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does AI research, with a focus on abstraction and reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others.