Prix bas
CHF132.00
Impression sur demande - l'exemplaire sera recherché pour vous.
This thesis presents the first isotope-shift measurement of bound-electron g-factors of highly charged ions and determines the most precise value of the electron mass in atomic mass units, which exceeds the value in the literature by a factor of 13. As the lightest fundamental massive particle, the electron is one of nature's few central building blocks. A precise knowledge of its intrinsic properties, such as its mass, is mandatory for the most accurate tests in physics - the Quantum Electrodynamics tests that describe one of the four established fundamental interactions in the universe. The underlying measurement principle combines a high-precision measurement of the Larmor-to-cyclotron frequency ratio on a single hydrogen-like carbon ion studied in a Penning trap with very accurate calculations of the so-called bound-electron g-factor. For the isotope-shift measurement, the bound-electron g-factors of two lithium-like calcium isotopes have been measured with relative uncertainties of a few 10^{-10}, constituting an as yet unrivaled level of precision for lithium-like ions.
Nominated as an outstanding PhD thesis by the GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany and the AMOP section of the DPG Offers an introduction to bound-electron g-factor physics Includes a comprehensive description of state-of-the-art, high-precision frequency detection techniques on single ions in Penning traps Provides a detailed explanation of the most precise determination of the atomic electron mass Includes supplementary material: sn.pub/extras
Auteur
2005-2011: Study of physics in Göttingen with stopovers at CERN and the University Claude Bernard Lyon 1. 2011: Diploma in high-energy physics, title: "Performance Study of a Diamond Pixel Detector Prototype for Future ATLAS Upgrades."
2011: Scientist at the Max Planck Institute for Dynamics and Self-Organization, topic: Installation of an experimental setup for the analysis of high turbulences.
2011-2015: PhD student at the GSI Helmholtz Centre for Heavy Ion Research. Since 2015 postdoc at the Max Planck Institute for Nuclear Physics, topic: Installation of a new experimental setup for the most precise determination of the atomic proton and neutron mass.
Contenu
Introduction.- The g-Factor - Exploring Atomic Structure and Fundamental Constants.- Penning Trap Physics.- Towards the Measurement of the Larmor-to-cyclotron Frequency Ratio.- Determination of the Atomic Mass of the Electron.- Outlook - A New Generation of High-Precision Penning Trap.