Prix bas
CHF148.00
Habituellement expédié sous 2 à 4 semaines.
Informationen zum Autor Fei "Fred" Wang , PhD, is a Professor and Condra Chair of Excellence in Power Electronics at the Min H. Kao Department of Electrical Engineering and Computer Science, the University of Tennessee, Knoxville, USA. Zheyu Zhang , PhD, is Warren H. Owen-Duke Energy Assistant Professor of Engineering at Holcombe Department of Electrical and Computer Engineering with the Zucker Family Graduate Education Center at Clemson University's Charleston Innovation Campus. Ruirui Chen , PhD, is a Research Assistant Professor at the Min H. Kao Department of Electrical Engineering and Computer Science, the University of Tennessee, Knoxville, USA. Klappentext Comprehensive resource on design of power electronics converters for three-phase AC applicationsDesign of Three-phase AC Power Electronics Converters contains a systematic discussion of the three-phase AC converter design considering various converter electrical, thermal, and mechanical subsystems and functions. . Focusing on establishing converter components and subsystems models needed for the design, the text demonstrates example designs for these subsystems and for whole three-phase AC converters considering interactions among subsystems. The design methods apply to different applications and topologies.The text consists of four parts. Part I is an introduction, which presents the basics of the three-phase AC converter, its design, and the goal and organization of the book. Part II focuses on characteristics and models important to the converter design for components commonly used in three-phase AC converters. Part III is on the design of subsystems, including passive rectifiers, inverters and active rectifiers, electromagnetic interference (EMI) filters, thermal management system, control and auxiliaries, mechanical system, and application considerations. Part IV is on design optimization, which presents methodology to achieve optimal design results for three-phase AC converters.Specific sample topics covered in Design of Three-phase AC Power Electronics Converters include: Models and characteristics for devices most commonly used in three-phase converters, including conventional Si devices , and emerging SiC and GaN devices. Models and selection of various capacitors; characteristics and design of magnetics using different types of magnetic cores, with a focus on inductors Optimal three-phase AC converter design including design and selection of devices, AC line inductors, DC bus capacitors, EMI filters, heatsinks, and control. The design considers both steady state and transient conditions Load and source impact converter design, such as motors and grid condition impacts.For researchers and graduate students in power electronics, along with practicing engineers working in the area of three-phase AC converters, Design of Three-phase AC Power Electronics Converters serves as an essential resource for the subject and may be used as a textbook or industry reference. Zusammenfassung DESIGN OF THREE-PHASE AC POWER ELECTRONICS CONVERTERSComprehensive resource on design of power electronics converters for three-phase AC applicationsDesign of Three-phase AC Power Electronics Converters contains a systematic discussion of the three-phase AC converter design considering various electrical, thermal, and mechanical subsystems and functions. Focusing on establishing converter components and subsystems models needed for the design, the text demonstrates example designs for these subsystems and for the whole three-phase AC converters considering interactions among subsystems. The design methods apply to different applications and topologies.The text presents the basics of the three-phase AC converter, its design, and the goal and organization of the book, focusing on the characteristics and models important to the converter design for components commonly used in three-phase AC converters. The autho...
Auteur
Fei "Fred" Wang, PhD, is a Professor and Condra Chair of Excellence in Power Electronics at the Min H. Kao Department of Electrical Engineering and Computer Science, the University of Tennessee, Knoxville, USA. Zheyu Zhang, PhD, is Warren H. Owen-Duke Energy Assistant Professor of Engineering at Holcombe Department of Electrical and Computer Engineering with the Zucker Family Graduate Education Center at Clemson University's Charleston Innovation Campus. Ruirui Chen, PhD, is a Research Assistant Professor at the Min H. Kao Department of Electrical Engineering and Computer Science, the University of Tennessee, Knoxville, USA.
Texte du rabat
Comprehensive resource on design of power electronics converters for three-phase AC applications Design of Three-phase AC Power Electronics Converters contains a systematic discussion of the three-phase AC converter design considering various converter electrical, thermal, and mechanical subsystems and functions. . Focusing on establishing converter components and subsystems models needed for the design, the text demonstrates example designs for these subsystems and for whole three-phase AC converters considering interactions among subsystems. The design methods apply to different applications and topologies. The text consists of four parts. Part I is an introduction, which presents the basics of the three-phase AC converter, its design, and the goal and organization of the book. Part II focuses on characteristics and models important to the converter design for components commonly used in three-phase AC converters. Part III is on the design of subsystems, including passive rectifiers, inverters and active rectifiers, electromagnetic interference (EMI) filters, thermal management system, control and auxiliaries, mechanical system, and application considerations. Part IV is on design optimization, which presents methodology to achieve optimal design results for three-phase AC converters. Specific sample topics covered in Design of Three-phase AC Power Electronics Converters include: Models and characteristics for devices most commonly used in three-phase converters, including conventional Si devices , and emerging SiC and GaN devices. Models and selection of various capacitors; characteristics and design of magnetics using different types of magnetic cores, with a focus on inductors Optimal three-phase AC converter design including design and selection of devices, AC line inductors, DC bus capacitors, EMI filters, heatsinks, and control. The design considers both steady state and transient conditions Load and source impact converter design, such as motors and grid condition impacts. For researchers and graduate students in power electronics, along with practicing engineers working in the area of three-phase AC converters, Design of Three-phase AC Power Electronics Converters serves as an essential resource for the subject and may be used as a textbook or industry reference.
Contenu
About the Authors xiii
Preface xv
Acknowledgments xvii
1 Introduction 1
1.1 Basics of Three-Phase AC Converters 1
1.2 Basics of Three-Phase AC Converter Design 20
1.3 Goal and Organization of This Book 26
Part I Components 31
2 Power Semiconductor Devices 33
2.1 Introduction 33
2.2 Static Characteristics 35
2.3 Switching Characteristics 50
2.4 Thermal Characteristics 57
2.5 Other Attributes 60
2.6 Scalability (Parallel/Series) 68
2.7 Relevance to Converter Design 70
2.8 Summary 72
3 Capacitors 75
3.1 Introduction 75
3.2 Capacitor Types and Technologies 75
3.3 Capacitor Selection in a Converter Design 82
3.4 Capacitor Characteristics and Models 84
3.5 Capacitor Bank (Parallel/Series) 98
3.6 Relevance to Converter Design 100
3.7 Summary 102
4 Magnetics 105
4.1 Introduction 105
4.2 Magnetic Core Materials and Construction 105
4.3 Inductor Design in a Converter 108
4.4 Inductor Characteristics and Models 110
4.5 Re…