Prix bas
CHF280.80
Impression sur demande - l'exemplaire sera recherché pour vous.
For the first time this book compiles chapters comprehensively dealing with extracellular matrices in arthropods from exoskeleton components to glandular matrices such as silks and saliva The unique mechanical properties of arthropod composite matrices have inspired and gained applicative uses in industrial and biomedical fields. The book will benefit people interested in this evolving area Comprehensive contributions on extracellular composite matrices in arthropods Includes supplementary material: sn.pub/extras
Auteur
Prof. Ephraim Cohen is the Morris and Helen Mauerberger Chair in Agricultural Entomology Academic degrees and appointments: 1972 Lecturer -Tel Aviv University 2000-2003 Head Dept. of Entomology 2001 Chairperson of the Steering Committee for Biological and Chemical Residues in Animals and Animal Products, Ministry of Agriculture, Israel The Hebrew University: 1978 Senior Lecturer 1985 Associate Professor 1990 Professor 1986-1989 Head, Plant Protection Studies 2000 Head, Dept. of Entomology 2004 The Morris Helen Mauerberger Chair in Agricultural Entomology Research Associate at University of California, Berkeley, California (Environmental Chemistry and Toxicology Laboratory) 1977-1979; 1983-1984; 1989; 1994-1995. 1998-1999 University of Melbourne, Melbourne, Australia 2004-2005 University of Sydney, Sydney, Australia.
Contenu
Part A Skeletal matrices 1 Genes of Cuticular Proteins and their Regulation - H. Kawasaki1.1 Recent Classification of Cuticular Proteins and the Construction of Cuticular Layers1.2 Factors that Affect the Expression of Cuticular Proteins1.3 Application of Genome Information1.4 Regulation of Gene Expression of Cuticular Proteins1.5 Future Prospects2 Chitin Synthetic and Degradation Pathways - S. Muthukrishnan, Y. Arakane, H. Merzendorfer and Q. yang2.1 Introduction2.2 Structure of Chitin2.3 Higher Order Structures Involving Chitin Fibers in the Cuticle2.4 Higher Order Structures in the Peritrophic Matrix2.5 Precursors of Chitin and generation of Activated Substrates2.6 Towards the Mode of Action of Insect Chitin Synthases2.7 Regulation of Chitin Synthesis2.8 Chitin deacetylation and Possible Role in Cuticle Assembly2.9 Chitin deacetylases in Insects2.10 Chitin Degradation 2.11 Chitinolytic N-Acetylglucosaminidase and their Genes2.12 Additional Proteins Involved in Chitin Protection and Degradation2.13 Cuticular Proteins Analogous to Peritrophins2.14 Cuticular Proteins Belonging to R&R and Other Groups2.15 Concluding Remarks3 Molecular model of skeletal organization and differentiation - B. Moussian3.1 Introduction3.2 Cuticles of Model Insects3.3 Conceptual model of cuticle differentiation3.4 Outlook4 Resilin The Pliant Protein - J. Michels, E. Appel, S.N. Gorb4.1 Introduction4.2 Biochemistry and molecular biology4.3 Identification and visualization of resilin4.4 Mechanical properties of resilin4.5 Occurrence and function in different systems4.6 Biomimetics4.7 Conclusions and outlook5 The Mineralized Exoskeletons of Crustaceans - S. Bentov, S. Abehsera and A. Sagi5.1 Introduction5.2 The advantage of mineralization5.3 Degree of mineralization5.4 Degree of crystallization5.5 The combination of calcium carbonate and calcium phosphate5.6 Involvement of proteins and genes5.7 Potential biomimetic applications inspired by the crustacean exoskeleton5.8 Concluding remarks6 Tyrosine Metabolism in Insect Cuticle Pigmentation and Sclerotization - M. Y. Noh, T. Asano, J. J. Kramer and Y. Arakane6.1 Introduction6.2 Functions of Key Enzymes/Proteins Involved in Cuticle Pigmentation and Sclerotization6.3 Interactions and Functions of Pigments in Insects6.4 Hormonal Regulation of Cuticle Pigmentation 6.5 Future Prospects and Concluding Remarks7 Cuticular Hydrocarbons: Biochemistry and Chemical Ecology - M. D. Ginzel and G. J. Blomquist 7.1 Introduction7.2 Chemical Composition of Insect Hydrocarbons7.3 Hydrocarbon Biosynthesis7.4 Ecological and Behavioral Aspects7.5 Future DirectionsPart B Peritrophic Membranes and Eggshell Matrices - 8 Peritrophic Matrices - H. Merzendorfer, M. Kekenberg and S. Muthukrishnan8.1 Introduction8.2 Structural Components on the Peritrophic Matrix8.3 Peritrophic Matrix Formation and assembly8.4 Peritrophic Matrix Properties and Structure-Function Relationship of Peritrophic Matrix Components8.5 Function of the Peritrophic Matrix8.6 Mechanisms Developed by Pathogens and Parasites to Cross the Peritrophic Membrane Barrier8.7 Comparative Genomics: Peritrophic Matrix Proteins in Different Insect Orders8.8 Peritrophic Matrix as a Target for Pest Control8.9 RNAi-Based Strategies8.10 Concluding Remarks and Perspectives9 Composite Eggshell Matrices: Chorionic Layers and Sub- Chorionic Cuticular Envelopes - G. L. Rezende, H. C. M. Vargas, B. Moussian and E. Cohen9.1 Introduction9.2 Maternal Eggshell Layers9.3 Cuticular Egg Envelopes of Arthropods9.4 Concluding RemarksPart C Skeletal Components as Targets for Interference10 Targeting Cuticular Components for Pest Management - D. Doucet and A. Retnakaran10.1 Introduction10.2 Structure of the Integument10.3 The Epicuticle10.4 The Endocuticle10.5 Interfering with Chitin Formation and Degradation10.6 The Exocuticle10.7 The Eclosion Cascade10.8 Identifying Other Possible Targets During Cuticle Genesis10.9 ConclusionsPart D Glandular Secretions - 11 Nature and Functions of Glands and Ducts in the Drosophila Reproductive Tract F. W. Avila, J. A. Sánchez-López, J. L. McGlaughon, S. Raman, M. F. Wolfner and Y. Heifetz11.1 Introduction 11.2 Setting the Context 11.3 Reproductive Tract Development and Overview 11.4 The Male Reproductive Tract 11.5 Fates of Male Secretions in Mated Females 11.6 The Female Reproductive Tract 11.7 Taking Control - Female Secretions Shape Later Reproductive Functionality11.8 Concluding Remarks12 Molecular and Structural Properties of Spider Silk - T. Crawford, C. Williams, R. Hekman, S. Dyrness, A. Arata and C. Vierra12.1 …