Prix bas
CHF144.00
Impression sur demande - l'exemplaire sera recherché pour vous.
Dieser Band liefert eine Studie über eindimensionale Wellen in inhomogenen und hereditaren Medien (d.h. Medien mit "Gedächtnis"). Die Autoren wenden eine neue, mathematisch exakte Faktorisierungsmethode an, die entweder zur exakten oder zur asymptotischen Zerlegung nichtlinearer Wellengleichungen in Multiplikatoren erster Ordnung führt.
This booklet presents a study of one-dimensional waves in solids which can be modelled by nonlinear wave equations of different types. The factorization method is the main tool in this analysis. It allows for an exact or at least asymp totic decomposition of the wave(s) under consideration in terms of first order multipliers. Chapter 1 provides a general introduction. It presents some well-known results on characteristics, Riemann invariants, simple waves, etc. The main result of Chap. 1 is Theorem 1.3.2. (Sect. 1.3.2) which establishes the possibility of exact factorization of the nonlinear wave equation EPa(a) 1 EPa _ 0 Ij(l-u- x2 with constant coefficients. This theorem permits one to construct further factor izations of more complicated wave equations which the reader will meet in the following chapters. Chapter 2 is devoted to short wave processes in inhomogeneous media, the main result being the uniform asymptotic factorization of nonlinear wave equa tions with variable coefficients and the description of corresponding single-wave processes without the usual assumption of a small wave amplitude.
Texte du rabat
This monograph presents the study of one-dimensional wavesin inhomogeneous and hereditary media (i.e., media withmemory). A new mathematically rigorous factorization methodis applied which yields either an exact or an asymptoticdecomposition of the nonlinear wave equations underconsideration into first order multipliers.A central result presented in the book is a factorizationtheorem for the simple wave equation with constantcoefficients. It permits to view Riemann invariants andsimple waves from a different angle and is used to go overto wave equations with variable coefficients and memory.
Contenu