Prix bas
CHF60.80
Impression sur demande - l'exemplaire sera recherché pour vous.
The Lie Theory Workshop, founded by Joe Wolf (UC, Berkeley), has been running for over two decades. At the beginning, the top universities in California and Utah hosted the meetings, which continue to run on a quarterly basis. Experts in representation theory/Lie theory from various parts of the US, Europe, Asia (China, Japan, Singapore, Russia), Canada, and South and Central America were routinely invited to give talks at these meetings. Nowadays, the workshops are also hosted at universities in Louisiana, Virginia, and Oklahoma. These Lie theory workshops have been sponsored by the NSF, noting the talks have been seminal in describing new perspectives in the field covering broad areas of current research. The contributors have all participated in these Lie theory workshops and include in this volume expository articles which will cover representation theory from the algebraic, geometric, analytic, and topological perspectives with also important connections to math physics. These survey articles, review and update the prominent seminal series of workshops in representation/Lie theory mentioned above, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, number theory, and mathematical physics. Many of the contributors have had prominent roles in both the classical and modern developments of Lie theory and its applications.
Includes contributions by international experts in representation theory/Lie theory Contains articles covering representation theory from algebraic, geometric, analytic, and topological perspectives Reviews and updates the prominent, seminal series of Lie Theory Workshops Includes supplementary material: sn.pub/extras
Texte du rabat
This volume reviews and updates a prominent series of workshops in representation/Lie theory, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, and mathematical physics. Many of the contributors have had leading roles in both the classical and modern developments of Lie theory and its applications. This Work, entitled Developments and Retrospectives in Lie Theor y, and comprising 26 articles, is organized in two volumes: Algebraic Methods and Geometric and Analytic Methods . This is the Geometric and Analytic Methods volume.
The Lie Theory Workshop series, founded by Joe Wolf and Ivan Penkov and joined shortly thereafter by Geoff Mason, has been running for over two decades. Travel to the workshops has usually been supported by the NSF, and local universities have provided hospitality. The workshop talks have been seminal in describing new perspectives in the field covering broad areas of current research. Most of the workshops have taken place at leading public and private universities in California, though on occasion workshops have taken place in Oregon, Louisiana and Utah. Experts in representation theory/Lie theory from various parts of the Americas, Europe and Asia have given talks at these meetings. The workshop series is robust, and the meetings continue on a quarterly basis.
Contributors to the Geometric and Analytic Methods volume:
Y. Bahturin D. Milii
P. Bieliavsky K.-H. Neeb
V. Gayral G. Ólafsson
A.de Goursac E. Remm
M. Goze W. Soergel
J. Hilgert F. Spinnler
A. Huckleberry M. Yakimov
T. Kobayashi R. Zierau
S. Mehdi
Contenu
Group gradings on Lie algebras and applications to geometry. II (Y. Bahturin, M. Goze, E. Remm).- Harmonic analysis on homogeneous complex bounded domains and noncommutative geometry (P. Bieliavsky, V. Gayral, A. de Goursac, F. Spinnler).- The radon transform and its dual for limits of symmetric spaces (J. Hilgert, G. Ólafsson).- Cycle Connectivity and Automorphism Groups of Flag Domains (A. Huckleberry).- Shintani functions, real spherical manifolds, and symmetry breaking operators (T. Kobayashi).- Harmonic spinors on reductive homogeneous spaces (S. Mehdi, R. Zierau).- Twisted HarishChandra sheaves and Whittaker modules: The nondegenerate case (D. Milii, W. Soergel).- Unitary representations of unitary groups (K.-H. Neeb).- Weak splitting of quotients of Drinfeld and Heisenberg doubles (M. Yakimov).
Prix bas