Prix bas
CHF132.00
Impression sur demande - l'exemplaire sera recherché pour vous.
This monograph develops techniques for equational reasoning in higher-order logic. Due to its expressiveness, higher-order logic is used for specification and verification of hardware, software, and mathematics. In these applica tions, higher-order logic provides the necessary level of abstraction for con cise and natural formulations. The main assets of higher-order logic are quan tification over functions or predicates and its abstraction mechanism. These allow one to represent quantification in formulas and other variable-binding constructs. In this book, we focus on equational logic as a fundamental and natural concept in computer science and mathematics. We present calculi for equa tional reasoning modulo higher-order equations presented as rewrite rules. This is followed by a systematic development from general equational rea soning towards effective calculi for declarative programming in higher-order logic and A-calculus. This aims at integrating and generalizing declarative programming models such as functional and logic programming. In these two prominent declarative computation models we can view a program as a logical theory and a computation as a deduction.
Texte du rabat
The text is aimed at researchers and advanced students in computer science and mathematics with interests in declarative programming, symbolic computation, term rewriting, equational reasoning, and theorem proving. It can provide a firm basis for a variety of graduate course in logic and theoretical computer science.
Contenu
1 Introduction.- 2 Preview.- 2.1 Term Rewriting.- 2.2 Narrowing.- 2.3 Narrowing and Logic Programming.- 2.4 ?-Calculus and Higher-Order Logic.- 2.5 Higher-Order Term Rewriting.- 2.6 Higher-Order Unification.- 2.7 Decidability of Higher-Order Unification.- 2.8 Narrowing: The Higher-Order Case.- 3 Preliminaries.- 3.1 Abstract Reductions and Termination Orderings.- 3.2 Higher-Order Types and Terms.- 3.3 Positions in ?-Terms.- 3.4 Substitutions.- 3.5 Unification Theory.- 3.6 Higher-Order Patterns.- 4 Higher-Order Equational Reasoning.- 4.1 Higher-Order Unification by Transformation.- 4.2 Unification of Higher-Order Patterns.- 4.3 Higher-Order Term Rewriting.- 5 Decidability of Higher-Order Unification.- 5.1 Elimination Problems.- 5.2 Unification of Second-Order with Linear Terms.- 5.3 Relaxing the Linearity Restrictions.- 5.4 Applications and Open Problems.- 6 Higher-Order Lazy Narrowing.- 6.1 Lazy Narrowing.- 6.2 Lazy Narrowing with Terminating Rules.- 6.3 Lazy Narrowing with Left-Linear Rules.- 6.4 Narrowing with Normal Conditional Rules.- 6.5 Scope and Completeness of Narrowing.- 7 Variations of Higher-Order Narrowing.- 7.1 A General Notion of Higher-Order Narrowing.- 7.2 Narrowing on Patterns with Pattern Rules.- 7.3 Narrowing Beyond Patterns.- 7.4 Narrowing on Patterns with Constraints.- 8 Applications of Higher-Order Narrowing.- 8.1 Functional-Logic Programming.- 8.2 Equational Reasoning by Narrowing.- 9 Concluding Remarks.- 9.1 Related Work.- 9.2 Further Work.
Prix bas