Prix bas
CHF57.85
Habituellement expédié sous 2 à 4 jours ouvrés.
Listings xii
Preface xvii
Chapter 1: Introduction 1
1.1 A (very) brief history of concurrency 1
1.2 Benefits of threads 3
1.3 Risks of threads 5
1.4 Threads are everywhere 9
Part I: Fundamentals 13
Chapter 2: Thread Safety 15
2.1 What is thread safety? 17
2.2 Atomicity 19
2.3 Locking 23
2.4 Guarding state with locks 27
2.5 Liveness and performance 29
Chapter 3: Sharing Objects 33
3.1 Visibility 33
3.2 Publication and escape 39
3.3 Thread confinement 42
3.4 Immutability 46
3.5 Safepublication 49
Chapter 4: Composing Objects 55
4.1 Designing a thread-safe class 55
4.2 Instance confinement 58
4.3 Delegating thread safety 62
4.4 Adding functionality to existing thread-safe classes 71
4.5 Documenting synchronization policies 74
Chapter 5: Building Blocks 79
5.1 Synchronized collections 79
5.2 Concurrent collections 84
5.3 Blocking queues and the producer-consumer pattern 87
5.4 Blocking and interruptible methods 92
5.5 Synchronizers 94
5.6 Building an efficient, scalable result cache 101
Part II: Structuring Concurrent Applications 111
Chapter 6: Task Execution 113
6.1 Executing tasks in threads 113
6.2 The Executor framework 117
6.3 Finding exploitable parallelism 123
Chapter 7: Cancellation and Shutdown 135
7.1 Task cancellation 135
7.2 Stopping a thread-based service 150
7.3 Handling abnormal thread termination 161
7.4 JVM shutdown 164
Chapter 8: Applying Thread Pools 167
8.1 Implicit couplings between tasks and execution policies 167
8.2 Sizing thread pools 170
8.3 Configuring ThreadPoolExecutor 171
8.4 Extending ThreadPoolExecutor 179
8.5 Parallelizing recursive algorithms 181
Chapter 9: GUI Applications 189
9.1 Why are GUIs single-threaded? 189
9.2 Short-running GUI tasks 192
9.3 Long-running GUI tasks &n...
Auteur
Brian Goetz is a software consultant with twenty years industry experience, with over 75 articles on Java development. He is one of the primary members of the Java Community Process JSR 166 Expert Group (Concurrency Utilities), and has served on numerous other JCP Expert Groups.
Tim Peierls is the very model of a modern multiprocessor, with BoxPop.biz, recording arts, and goings on theatrical. He is one of the primary members of the Java Community Process JSR 166 Expert Group (Concurrency Utilities), and has served on numerous other JCP Expert Groups.
Joshua Bloch is a principal engineer at Google and a Jolt Award-winner. He was previously a distinguished engineer at Sun Microsystems and a senior systems designer at Transarc. Josh led the design and implementation of numerous Java platform features, including JDK 5.0 language enhancements and the award-winning Java Collections Framework. He holds a Ph.D. in computer science from Carnegie Mellon University.
Joseph Bowbeer is a software architect at Vizrea Corporation where he specializes in mobile application development for the Java ME platform, but his fascination with concurrent programming began in his days at Apollo Computer. He served on the JCP Expert Group for JSR-166 (Concurrency Utilities).
David Holmes is director of DLTeCH Pty Ltd, located in Brisbane, Australia. He specializes in synchronization and concurrency and was a member of the JSR-166 expert group that developed the new concurrency utilities. He is also a contributor to the update of the Real-Time Specification for Java, and has spent the past few years working on an implementation of that specification. Doug Lea is one of the foremost experts on object-oriented technology and software reuse. He has been doing collaborative research with Sun Labs for more than five years. Lea is Professor of Computer Science at SUNY Oswego, Co-director of the Software Engineering Lab at the New York Center for Advanced Technology in Computer Applications, and Adjunct Professor of Electrical and Computer Engineering at Syracuse University. In addition, he co-authored the book, Object-Oriented System Development (Addison-Wesley, 1993). He received his B.A., M.A., and Ph.D. from the University of New Hampshire.
Texte du rabat
As processors become faster and multiprocessor systems become cheaper, the
need to take advantage of multithreading in order to achieve full hardware
resource utilization only increases the importance of being able to incorporate
concurrency in a wide variety of application categories. For many developers,
concurrency remains a mystery. Developing, testing and debugging
multithreaded programs is extremely difficult because concurrency hazards do
not manifest themselves uniformly or reliably. This book is intended to be
neither an introduction to concurrency (any threading chapter in an intro
book does that) nor is it an encyclopedic reference of All Things Concurrency
(that would be Doug Lea's Concurrent Programming in Java). Instead, this title
is a combination of concepts, guidelines, and examples intended to assist
developers in the difficult process of understanding concurrency and its new
tools in J2SE 5.0. Filled with contributions from Java gurus such as Josh Bloch,
David Holmes and Doug Lea, this book provides any Java programmers with
the basic building blocks they need to gain a basic understanding of
concurrency and its benefits.
Résumé
"I was fortunate indeed to have worked with a fantastic team on the design and implementation of the concurrency features added to the Java platform in Java 5.0 and Java 6. Now this same team provides the best explanation yet of these new features, and of concurrency in general. Concurrency is no longer a subject for advanced users only. Every Java developer should read this book."
--Martin Buchholz
JDK Concurrency Czar, Sun Microsystems
"For the past 30 years, computer performance has been driven…