Prix bas
CHF60.00
Impression sur demande - l'exemplaire sera recherché pour vous.
The main subject of this book is an up-to-date and in-depth survey of the theory of normal frames and coordinates in di?erential geometry. The existing results, as well as new ones obtained lately by the author, on the theme are presented. The text is so organized that it can serve equally well as a reference manual, introduction to and review of the current research on the topic. Correspondingly, the possible audience ranges from graduate and post-graduate students to sci- tists working in di?erential geometry and theoretical/mathematical physics. This is re?ected in the bibliography which consists mainly of standard (text)books and journal articles. The present monograph is the ?rst attempt for collecting the known facts concerting normal frames and coordinates into a single publication. For that r- son, the considerations and most of the proofs are given in details. Conventionally local coordinates or frames, which can be holonomic or not, are called normal if in them the coe?cients of a linear connection vanish on some subset, usually a submanifold, of a di?erentiable manifold. Until recently the ex- tence of normal frames was known (proved) only for symmetric linear connections on submanifolds of a manifold. Now the problems concerning normal frames for derivationsof thetensor algebraovera di?erentiablemanifoldarewellinvestigate; in particular they completely cover the exploration of normal frames for arbitrary linear connections on a manifold. These rigorous results are important in conn- tion with some physical applications.
First comprehensive and complete overview on results and methods concerning normal frames and coordinates, including full proofs Includes new results, methods and ideas A large number of examples and exercises illustrates the material Includes supplementary material: sn.pub/extras
Texte du rabat
This book provides the first comprehensive and complete overview on results and methods concerning normal frames and coordinates in differential geometry, with emphasis on vector and differentiable bundles.
The book can be used as a reference manual, for reviewing the existing results and as an introduction to some new ideas and developments. Virtually all essential results and methods concerning normal frames and coordinates are presented, most of them with full proofs, in some cases using new approaches.
All classical results are expanded and generalized in various directions. For example, normal frames and coordinates are defined and investigated for different kinds of derivations, in particular for (possibly linear) connections on manifolds, with or without torsion, in vector bundles and on differentiable bundles; they are explored also for (possibly parallel) transports along paths in vector bundles. Theorems of existence, uniqueness and, possibly, holonomicity of normal frames and coordinates are proved; mostly, the proofs are constructive and some of their parts can be used independently for other tasks.
Numerous examples and exercises illustrate the material. Graduate students and researchers alike working in differential geometry or mathematical physics will benefit from this resource of ideas and results which are of particular interest for applications in the theory of gravitation, gauge theory, fibre bundle versions of quantum mechanics, and (Lagrangian) classical and quantum field theories.
Contenu
Manifolds, Normal Frames and Riemannian Coordinates.- Existence, Uniqueness and Construction of Normal Frames and Coordinates for Linear Connections.- Normal Frames and Coordinates for Derivations on Differentiable Manifolds.- Normal Frames in Vector Bundles.- Normal Frames for Connections on Differentiable Fibre Bundles.
Prix bas
Prix bas
Prix bas
Prix bas