Prix bas
CHF180.80
Impression sur demande - l'exemplaire sera recherché pour vous.
This book summarizes naturally occurring and designed bio-inspired molecular building blocks assembled into nanoscale structures. It covers a fascinating array of biomimetic and bioinspired materials, including inorganic nanozymes, structures formed by DNA origami, a wide range of peptide and protein-based nanomaterials, as well as their applications in diagnostics and therapeutics. The book elucidates the mechanism of assembly of these materials and characterisation of their mechanical and physico-chemical properties which inspires readers not only to exploit the potential applications of nanomaterials, but also to understand their potential risks and benefits. It will be of interest to a broad audience of students and researchers spanning the disciplines of biology, chemistry, engineering, materials science, and physics.
Covers a fascinating array of biomimetic and bioinspired nanomaterials Elucidates the mechanism of assembly of nanomaterials and characterisation of their mechanical and physico-chemical properties It will be of interest to a broad audience in the disciplines of biology, chemistry, engineering, materials science, and physics
Auteur
Dr. Sarah Perrett is a Professor at the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China. Dr. Tuomas Knowles is a Professor in the Department of Chemistry, University of Cambridge, UK. Dr. Alexander Buell is a Professor in the Department of Biotechnology and Biomedicine, Technical University of Denmark.
Contenu
Chapter 1. Nanozymes: Biomedical Applications of Enzymatic Fe3O4 Nanoparticles From In Vitro to In Vivo.- Chapter 2. DNA Nanotechnology for Building Sensors, Nanopores and Ion-Channels.- Chapter 3. Bio Mimicking of Extracellular Matrix.- Chapter 4. Self-Assembly of Ferritin: Structure, Biological Function and Potential Applications in Nanotechnology.- Chapter 5. Dynamics and Control of Peptide Self-Assembly and Aggregation.- Chapter 6. Peptide Self-Assembly and its Modulation: Imaging on the Nanoscale.- Chapter 7. The Kinetics, Thermodynamics and Mechanisms of Short Aromatic Peptide Self-Assembly.- Chapter 8. Bacterial Amyloids: Biogenesis and Biomaterials.- Chapter 9. Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials.- Chapter 10. Nanostructured, Self-Assembled Spider Silk Materials for Biomedical Applications.- Chapter 11. Protein Microgels from Amyloid Fibril Networks.- Chapter 12. Protein Nanofibrils as Storage Forms of Peptide Drugs and Hormones.- Chapter 13. Bioinspired Engineering of Organ-on-Chip Devices.