Prix bas
CHF255.20
Pas encore paru. Cet article sera disponible le 30.12.2024
Auteur
Biswadip Basu Mallik is a Senior Assistant Professor of Mathematics in the Department of Basic Sciences & Humanities at Institute of Engineering & Management, Kolkata, India.
Gunjan Mukherjee is an Assistant professor in the Department of Computational Science, Brainware University, Barasat, India.
Rahul Kar holds a master's degree in mathematics from Burdwan University and is currently working as a SACT-II Mathematics faculty of Kalyani Mahavidyalaya, Kalyani, Nadia, West Bengal.
Aryan Chaudhary is the Research Head and Lead Member of the research project launched by Nijji Healthcare Pvt Ltd.
Texte du rabat
The book delves into how to apply deep learning to areas of operations research. The book focuses on decision modeling and model optimization and features case studies.
Résumé
The model-based approach for carrying out classification and identification of tasks has led to the pervading progress of machine learning paradigm in diversified fields of technology. Deep Learning Applications in Operations Research presents the varied applications of this model-based approach. Apart from the classification process, the machine learning (ML) model has become effective enough to predict future trends of any sort of phenomena. Such fields as object classification, speech recognition, and face detection have sought extensive application of artificial intelligence (AI) and machine learning as well. The application of AI and ML has also the domains of agriculture, health sectors, and insurance.
Operations research is the branch of mathematics for performing so many operational tasks in other allied domains, and the book explains how the implementation of automated strategies in optimization and parameter selection can be carried out by AI and ML. Operations research has many beneficial aspects for decision making. Discussing how the proper decision depends on a number of factors, the book examines how AI and ML can be used to model equations and define constraints to solve more easily problems and discover proper and valid solutions. It also looks at how automation plays a significant role in minimizing human labor and thereby minimizes overall time and cost. Case studies look at how to streamline operations and unearth data to make better business decisions. The concepts presented in this book can bring about and guide unique research directions to the future application of AI enabled technologies.
Contenu