Prix bas
CHF67.20
Impression sur demande - l'exemplaire sera recherché pour vous.
Introduces the benefits of wireless communications techniques to the study of networked control systems
Shows the reader how power control may be used to mitigate the effects of fading channels in the remote estimation of dynamical systems Broadens the reader's arsenal of design methods by considering energy-harvesting sensors and resource allocation improvement with optimized estimation objectives
Auteur
Alex S. Leong was born in Macau in 1980. He received the B.S. degree in mathematics and B.E. degree in electrical engineering in 2003, and the Ph.D. degree in electrical engineering in 2008, all from the University of Melbourne, Australia. He is currently a Research Associate at the University of Paderborn, Germany. He was with the Department of Electrical and Electronic Engineering at the University of Melbourne from 2008 to 2015. His research interests include networked control systems, signal processing for sensor networks, and statistical signal processing. Dr. Leong was the recipient of the L. R. East Medal from Engineers Australia in 2003, an Australian Postdoctoral Fellowship from the Australian Research Council in 2009, and a Discovery Early Career Researcher Award from the Australian Research Council in 2012.
Daniel E. Quevedo holds the Chair in Automatic Control (Regelungs- und Automatisierungstechnik) at Paderborn University, Germany. He received Ingeniero CivilElectronico and M.Sc. degrees from the Universidad Tecnica Federico Santa Maria, Chile, in 2000. In 2005, he was awarded the Ph.D. degree from The University of Newcastle, Australia. Dr. Quevedo was supported by a full scholarship from the alumni association during his time at the Universidad Tecnica Federico Santa Maria and received several university-wide prizes upon graduating. He received the IEEE Conference on Decision and Control Best Student Paper Award in 2003 and was also a finalist in 2002. In 2009 he was awarded a five-year Research Fellowship from the Australian Research Council. Prof. Quevedo is Editor of the International Journal of Robust and Nonlinear Control and serves as Chair of the IEEE Control Systems Society Technical Committee on Networks & Communication Systems. His research interests are in automatic control, signal processing, and power electronics. Subhranki Dey was born in India in 1968. He received the B.Tech. and M.Tech. degrees from the Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, in 1991 and 1993, respectively, and the Ph.D. degree from the Department of Systems Engineering, Research School of Information Sciences and Engineering, Australian National University, Canberra, in 1996. He is currently a Professor with the Department of Engineering Sciences in Uppsala University, Sweden. Prior to this, he was a Professor with the Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, Australia, from 2000 until early 2013. From September 1995 to September 1997, and September 1998 to February 2000, he was a Postdoctoral Research Fellow with the Department of Systems Engineering, Australian National University. From September 1997 to September 1998, he was a Postdoctoral Research Associate with the Institute for Systems Research, University of Maryland, College Park. His current research interests include networked control systems, wireless communications and networks, signal processing for sensor networks, and stochastic and adaptive signal processing and control. Professor Dey currently serves on the Editorial Board of IEEE Transactions on Signal Processing and IEEE Transactions on Control of Network Systems. He was also an Associate Editor for the IEEE Transactions on Signal Processing during 2007-2010 and the IEEE Transactions on Automatic Control during 2004-2007, and Associate Editor for Elsevier Systems and Control Letters during 2003-2013.
Contenu
Introduction. - Optimal Power Allocation for Kalman Filtering over Fading Channels.- Optimal Transmission Scheduling for Event-Triggered Estimation.- Optimal Transmission Strategies for Remote State Estimation.- Remote State Estimation in Multi-Hop Networks.- Conclusion.